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The Forward Problem: The Standard Method for Modeling
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Molecular Model  
(DFT, MD, AIMD, etc.)

System Properties 
(Thermo + Dynamics)

Comparison of simple 
potential functions for 
simulating liquid water 
W. L. Jorgensen et al. 1983,
J. Chem. Phys. 



The Forward Problem: The Standard Method for Modeling
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The philosophy behind the forward problem is that 
we create a model for nature and then predict the 

value of measurements given that model.

System Properties 
(Thermo + Dynamics)

Molecular Model  
(DFT, MD, AIMD, etc.)



Some Challenges with the Forward Problem Approach
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What model 
should I choose?

Quantum?

Classical?

Continuum?

Phenomenological?

Machine Learning?
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Some Challenges with the Forward Problem Approach
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What model 
should I choose?

How good are my 
model parameters? 

Is my model appropriate, 
or am I overfitting?

Example: We can always fit an 
n-degree polynomial to n data 
points, but does that mean it is 
a perfect physical model? (NO!)

Every model parameter has 
an associated uncertainty.

Quantum?

Classical?

Continuum?

Phenomenological?

Machine Learning?

We can address all of these problems with 
Bayesian uncertainty quantification!



Bayesian methods as a framework to quantify uncertainty 
The Basic Outline of Bayesian Approaches
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(1) Define ‘prior’ probability distributions

The Basic Outline of Bayesian Approaches
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Bayesian methods as a framework to quantify uncertainty 

The prior is our initial 
state of knowledge Should be wide and flat to allow 

for all (reasonable) possibilities



(1) Define ‘prior’ probability distributions

(2) Define and evaluate a ‘likelihood’ function

The Basic Outline of Bayesian Approaches
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Bayesian methods as a framework to quantify uncertainty 

The likelihood reflects how 
accurately our model parameters 

(θ) fit the experimental data (y)



(1) Define ‘prior’ probability distributions

(2) Define and evaluate a ‘likelihood’ function

(3) Solve for the ‘posterior’ distribution

The Basic Outline of Bayesian Approaches
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Bayesian methods as a framework to quantify uncertainty 

The posterior is the new probability 
of parameters after observations



Uncertainty Quantification

Marginal Posteriors on LJ Parameters
Koumoutsakos 2012, J. Chem. Phys.

(1) Define ‘prior’ probability distributions

(2) Define and evaluate a ‘likelihood’ function

(3) Solve for the ‘posterior’ distribution

Uncertainty
Sensitivity
Adequacy 

The posterior is a direct quantification of parameter 
uncertainty based on your experimental data, Y.

The Basic Outline of Bayesian Approaches
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Bayesian methods as a framework to quantify uncertainty 



Bayesian Methods on Non-Parametric Functions! - Gaussian Processes 
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Bayesian Methods on Non-Parametric Functions! - Gaussian Processes 
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Kernels specify the Gaussian process 
‘prior’ over functions!

Make observations and predict 
function with uncertainty!



Applications of Bayesian Methods in 
Statistical Mechanical Inverse Problems
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What is an Inverse Problem?
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System Properties 
(Thermo + Dynamics)

Molecular Model  
(DFT, MD, AIMD, etc.)
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System Properties 
(Thermo + Dynamics)

Molecular Model  
(DFT, MD, AIMD, etc.)

The philosophy behind inverse problems is that we learn 
a model for nature based on experimental observation.

This is also the idea behind Bayesian methods!

What is an Inverse Problem?
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Scattering Analysis for 
Ill-Posed Structure Prediction

A. K. Soper 1996, Chem. 
Phys.

Applications of Inverse Problems for Interesting Chemistry



19

Scattering Analysis for 
Ill-Posed Structure Prediction

A. K. Soper 1996, Chem. 
Phys.

Coarse-Graining
Carmichael et al. 2013, 

J. Chem. Phys.

Applications of Inverse Problems for Interesting Chemistry
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Scattering Analysis for 
Ill-Posed Structure Prediction

A. K. Soper 1996, Chem. 
Phys.

Coarse-Graining
Carmichael et al. 2013, 

J. Chem. Phys.

Structure Optimized Potential 
Refinement

B. L. Shanks 2022, J. Phys. Chem. Lett.

Applications of Inverse Problems for Interesting Chemistry



I. Structure-Optimized Potential Refinement (SOPR): 
Learning Interaction Potentials from Scattering Data
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Motivation 
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● From statistical mechanics, we know that we can predict all 
thermodynamic properties of a system if we know both the structure 
and potential energy.

● The “inverse problem” involves finding the potential energy given 
experimental data on the atomic positions (scattering).

● Researchers have been looking for a solution to this inverse problem for 
over a century, and no robust and accurate method has ever been 
demonstrated.

● We attempted to revisit this problem using the powerful method of 
Bayesian inference.



Training Force Fields from Scattering Data with SOPR
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GP for Probabilistic RegressionSOPR Algorithm

(1) Run molecular simulation with 
potential Vo, calculate simulated 
RDF

(2)

(3) Gaussian process regression for 
force stability (figure to the right).

(4) Run new molecular simulation and 
check for consistency between exp 
and sim

(5) Repeat until converged!



Noble Gas Force Fields from Scattering Data
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SOPR Potentials Generated from Neutron Scattering Data



Noble Gas Force Fields from Scattering Data
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Radial Distribution Functions and Vapor Liquid Equilibrium Match with Excellent Agreement



Noble Gas Force Fields from Scattering Data
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Radial Distribution Functions and Vapor Liquid Equilibrium Match with Excellent Agreement

SOPR is the first method demonstrated to 
determine transferable potentials from 

experimental scattering data in real fluids!



Extending SOPR Beyond Monatomics - Molecular Liquids 
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Excellent RDF + VLE Agreement for Water, Benzene and Methane

Abdur Shazed

Harry Sullivan



Impact
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● SOPR is the first method to find transferable potentials 
from neutron scattering data!

● Preliminary results show similar efficacy on molecular 
liquids (water, benzene and methane)

● SOPR offers an efficient way to determine force fields 
from experiments free from a functional form.



II. How Does Experimental Uncertainty Influence our 
Potential Predictions?
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Understanding Experimental Uncertainty Under a Known Model 

Measurement Uncertainty

Noise in the Structure Factor of Water
Neuefiend 2012, Nuc. Inst. Methods.
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● We argued that SOPR could 
determine non-parametric potentials 
that are accurate and flexible

● However, we don’t know how 
uncertainty in the experimental data 
impacts predictions from SOPR

● Here we use Bayesian inference to 
quantify this when the model is known 
(toy problem).



Mie Fluid Interaction Potential
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Investigating the impact of measurement uncertainty in Mie fluids

Run Model 
Simulation



Mie Fluid Interaction Potential
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Reactor Source Spallation Source

Run Model 
Simulation

Investigating the impact of measurement uncertainty in Mie fluids
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Can we recover our original model from the structure?
Bayesian Marginal Probability Distribution on Model Parameters

Known Model



34

Can we recover our original model from the structure?

Bayesian optimization recovers force field parameters with high-accuracy for 
low uncertainty structure factor measurements.

Bayesian Marginal Probability Distribution on Model Parameters
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Uncertainty increases and accuracy declines rapidly below a 0.024 variance.

This data quality is representative of the 1960s-1980s neutron sources. 

Can we recover our original model from the structure?
Bayesian Marginal Probability Distribution on Model Parameters
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Existing instruments (NOMAD/NIMROD) can provide measurements below 
the precision threshold. 

Can we recover our original model from the structure?
Bayesian Marginal Probability Distribution on Model Parameters
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We have shown that experimental uncertainty can drastically 
influence the results of inverse methods!

Before this study, many assumed that recovering interaction potential 
parameters from neutron scattering was not feasible.

We know have evidence that prior work over the last 60 years 
struggled to find solutions to the inverse problem because the 
available data was too low quality!

Impact



III. Designing Surrogate Models for Expensive Calculations
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Motivation

39

● Bayesian methods can answer important questions with 
respect to uncertainty, but are computationally expensive.

● Each posterior distribution represents results from ~1 
million molecular sims!

● How can we speed up the Bayesian analysis?



Accelerated Bayesian Inference with Gaussian Process Surrogates 

Evaluating the Bayesian likelihood is easy! Just run ~1 million molecular 
simulations to populate the model parameter space and you’re done! 
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Accelerated Bayesian Inference with Gaussian Process Surrogates 

Evaluating the Bayesian likelihood is easy! Just run ~1 million molecular 
simulations to populate the model parameter space and you’re done! 

~86 fold speed up
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Instead, we train a GP on N ~ 480 simulations
For data containing     independent variables. 



Local GPs reduce matrix size and are 
about 3500 fold faster than full GPs

Evaluating the Bayesian likelihood is easy! Just run ~1 million molecular 
simulations to populate the model parameter space and you’re done! 

Accelerated Bayesian Inference with Gaussian Process Surrogates 

Instead, we train a GP on N ~ 480 simulations
For data containing     independent variables. 
~86 fold speed up
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Evaluating the Bayesian likelihood is easy! Just run ~1 million molecular 
simulations to populate the model parameter space and you’re done! 

Accelerated Bayesian Inference with Gaussian Process Surrogates 

Instead, we train a GP on N ~ 480 simulations
For data containing     independent variables. 
~86 fold speed up
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Local GPs reduce matrix size and are 
about 3500 fold faster than full GPs

Local Gaussian processes are ~3500x faster than 
traditional GPs by reducing dimension of matrices



Example: Building a LGP Surrogate Model for the RDF of Liquid Ne
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Mie Potential w/ 3 Parameters

Bayes Theorem



Example: Building a LGP Surrogate Model for the RDF of Liquid Ne

Mie Potential w/ 3 Parameters

Bayes Theorem

Replace with Machine 
Learning (Local GP) 
Surrogate Model that is 
faster!
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Speed and Accuracy of Local Gaussian Process Surrogate Models
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A GP can predict the RDF 
86x faster than MD

A local GP can predict 
the RDF 288,000x 
faster than MD!!

We also find that the 
RMSE is within the RDF 
uncertainty

 

RMSE Over Test Set



Learning from the Bayesian Posterior Distribution
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Posterior marginal distributions are just integrals over the joint posterior 



Learning from the Bayesian Posterior Distribution
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Posterior marginal distributions are just integrals over the joint posterior 

Local GP surrogates reduce the calculation of the 
Bayesian posterior from ~22 days with a standard GP to 
under 9 minutes on our local cluster!



Learning from the Posterior Predictive Distribution
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Residual AnalysisPosterior Predictive

Experimental data often lies outside of the credibility interval →  there is 
potentially missing physics that we need to incorporate into the model.



Impact
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● Local GP surrogate models are reliable and fast!

● They enable Bayesian force field optimization and 
uncertainty quantification for complex experiments
○ (scattering and spectroscopy data)

● These surrogate models can help with model selection, 
validation and sensitivity analysis.



Summary and Key Takeaways

● Inverse problems are useful for interesting chemistry, including 
scattering analysis, coarse-graining, and force field development.

● Bayesian inference is a rigorous framework to quantify uncertainty, 
which enables detailed study of model sensitivity, uncertainty, and 
adequacy.

● Bayesian UQ can answer questions around interatomic forces, 
enable active learning approaches using decision theory, and 
rigorously incorporate uncertainty into force field development.

● Local GPs are effective surrogate models for complex experimental data 
(scattering, spectra, etc)
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Thank you!

Brennon Shanks

Hoepfner Research Group

Email: brennon.shanks@chemeng.utah.edu

Website: https://bshanks.netlify.app/
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