

Machine learning accelerated methods to predict interatomic forces from experimental structure measurements

Presenter: **Brennon L. Shanks** Harry W. Sullivan Abdur R. Shazed Michael P. Hoepfner

University of Utah, Department of Chemical Engineering

The Standard Paradigm for Atomistic Modeling

Molecular Model *(DFT, Classical MD, AIMD, etc)*

System Properties (*Structure* + *Dynamics*)

The Inverse Problem for Model Design

Molecular Model (DFT, Classical MD, AIMD, etc)

Scattering Analysis Alan Soper 1996, *Chem. Phys.*

Scattering Analysis Scott Shell 2013, Alan Soper 1996, Chem. Phys. J. Chem. Phys. g_{HH}(r) 6 320 6.440 6.560 6.680 6 800 6.920 7.000 6 1.07 g_{он}(r) 0.61 E (kJ/mol) 0.43 2 0.33 g₀₀(r) 0.27 6 8 10 0 2 4 2.48 2.66 2.86 3.09 r [Å] σ (Å)

Coarse-Graining

Scattering Analysis Alan Soper 1996, Chem. Phys.

Coarse-Graining Scott Shell 2013, J. Chem. Phys.

Force Field Development in Simple Liquids Brennon Shanks 2022, J. Phys. Chem. Lett.

Inverse methods are widely used for scattering analysis and coarse-graining **but** not to build force fields from experimental data... **why?**

Unique Challenges of Inverting Experimental Scattering Data

Measurement Uncertainty

Noise in the Structure Factor of Water Neuefiend 2012, *Nuc. Inst. Methods.* Unique Challenges of Inverting Experimental Scattering Data

Noise in the Structure Factor of Water Neuefiend 2012, *Nuc. Inst. Methods.*

Real-space structure is non-unique Alan Soper 2007, Condens. Matt.

The Basic Outline of Bayesian Approaches

The Basic Outline of Bayesian Approaches

(1) Define 'prior' distributions

 $p(\theta)$

The Basic Outline of Bayesian Approaches

- (1) Define 'prior' distributions
- (2) Define and evaluate a 'likelihood' function

 $p(\mathcal{Y}|\boldsymbol{\theta})p(\boldsymbol{\theta})$

The Basic Outline of Bayesian Approaches

- (1) Define 'prior' distributions
- (2) Define and evaluate a 'likelihood' function
- (3) Solve for the 'posterior' distribution

$$p(\theta|\mathscr{Y}) = rac{p(\mathscr{Y}|\theta)p(\theta)}{p(\mathscr{Y})}$$

The posterior is a direct quantification of parameter uncertainty based on your experimental data, Y.

The Basic Outline of Bayesian Approaches

- (1) Define 'prior' distributions
- (2) Define and evaluate a '**likelihood'** function
- (3) Solve for the '**posterior**' distribution

$$p(\boldsymbol{\theta}|\mathscr{Y}) = \frac{p(\mathscr{Y}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathscr{Y})}$$

The posterior is a direct quantification of parameter uncertainty based on your experimental data, Y.

Marginal Posteriors on LJ Parameters Koumoutsakos 2015, J. Chem. Phys.

Accelerated Bayesian Inference with Gaussian Process Surrogates

Evaluating the Bayesian likelihood is easy! Just run ~1 million molecular simulations to populate the model parameter space and you're done!

Accelerated Bayesian Inference with Gaussian Process Surrogates

Evaluating the Bayesian likelihood is easy! Just run ~1 million molecular simulations to populate the model parameter space and you're done!

Instead, we train a GP on N ~ 1000 simulations For data containing η independent variables.

~200 fold speed up $(N\eta \times \dim(\theta) + 1)$ $GP(\theta^*)$ $\theta_{1,1}$ $\theta_{2,1}$... r_1 0 0 $\theta_{1,1}$ $\theta_{2,1}$... r_2 $\mathbf{\hat{X}} =$ $\theta_{1,1}$ $\theta_{2,1}$... r_{η} $\theta_{1,2}$ $\theta_{2,2}$... r_1 -10 99% LOOCV Score

Accelerated Bayesian Inference with Gaussian Process Surrogates

Evaluating the Bayesian likelihood is easy! Just run ~1 million molecular simulations to populate the model parameter space and you're done!

Instead, we train a GP on N ~ 1000 simulations For data containing η independent variables. Local GPs reduce matrix size and are about 600 fold faster than full GPs

Application: Understanding Experimental Uncertainty Under a Known Model

Measurement Uncertainty

Noise in the Structure Factor of Water Neuefiend 2012, *Nuc. Inst. Methods.*

Investigating the impact of measurement uncertainty in Mie fluids

Mie Fluid Interaction Potential

Investigating the impact of measurement uncertainty in Mie fluids

Bayesian Marginal Probability Distribution on Model Parameters

Bayesian Marginal Probability Distribution on Model Parameters

Bayesian optimization recovers force field parameters with high-accuracy for low uncertainty structure factor measurements.

Marginal Probability Distribution on Model Parameters

Uncertainty increases and accuracy declines rapidly below a 0.024 variance.

This data quality is representative of the 1960s-1980s neutron sources.

Marginal Probability Distribution on Model Parameters

Existing instruments (NOMAD/NIMROD) can provide measurements below the precision threshold.

Summary and Key Takeaways

• Inverse problems are useful for interesting chemistry, including scattering analysis, coarse-graining, and atomistic force field development.

• Bayesian uncertainty quantification is a rigorous framework to understand our confidence in our models.

• We need ML accelerated approaches to populate Bayesian likelihood distributions.

• Bayesian UQ can help answer fundamental questions around interatomic forces, enable active learning approaches using decision theory, and rigorously incorporate experimental data into atomistic models.