
Machine learning accelerated methods to predict interatomic 
forces from experimental structure measurements

Presenter: Brennon L. Shanks
Harry W. Sullivan
Abdur R. Shazed

Michael P. Hoepfner

University of Utah, Department of Chemical Engineering

1



The Standard Paradigm for Atomistic Modeling
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The Inverse Problem for Model Design
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Scattering Analysis
Alan Soper 1996, Chem. Phys.
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Applications of the Inverse Problem for Interesting Chemistry
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Applications of the Inverse Problem for Interesting Chemistry

Inverse methods are widely used for scattering analysis and 
coarse-graining but not to build force fields from experimental data… why?



Unique Challenges of Inverting Experimental Scattering Data

Measurement Uncertainty

Noise in the Structure Factor of Water
Neuefiend 2012, Nuc. Inst. Methods.



Unique Challenges of Inverting Experimental Scattering Data

Measurement Uncertainty “Experimental” Model Uncertainty

Noise in the Structure Factor of Water
Neuefiend 2012, Nuc. Inst. Methods.

Real-space structure is non-unique
Alan Soper 2007, Condens. Matt.



Bayesian Methods Can Quantify Parameter Uncertainty Given 
Uncertain Experimental Data

The Basic Outline of Bayesian Approaches
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Parameter Uncertainty

Marginal Posteriors on LJ Parameters
Koumoutsakos 2015, J. Chem. Phys.

(1) Define ‘prior’ distributions

(2) Define and evaluate a ‘likelihood’ function

(3) Solve for the ‘posterior’ distribution

Maximum a 
posteriori (MAP)

The posterior is a direct quantification of parameter 
uncertainty based on your experimental data, Y.

The Basic Outline of Bayesian Approaches
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Uncertain Experimental Data
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Local GPs reduce matrix size and are 
about 600 fold faster than full GPs
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Application: Understanding Experimental 
Uncertainty Under a Known Model 

Measurement Uncertainty

Noise in the Structure Factor of Water
Neuefiend 2012, Nuc. Inst. Methods.



Mie Fluid Interaction Potential
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Investigating the impact of measurement uncertainty in Mie fluids

Run Model 
Simulation



Mie Fluid Interaction Potential
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Investigating the impact of measurement uncertainty in Mie fluids

Reactor Source Spallation Source

Run Model 
Simulation
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Can we recover our original model from the structure?
Bayesian Marginal Probability Distribution on Model Parameters

Known Model
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Can we recover our original model from the structure?

Bayesian optimization recovers force field parameters with high-accuracy for 
low uncertainty structure factor measurements.

Bayesian Marginal Probability Distribution on Model Parameters
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Uncertainty increases and accuracy declines rapidly below a 0.024 variance.

This data quality is representative of the 1960s-1980s neutron sources. 

Marginal Probability Distribution on Model Parameters

Can we recover our original model from the structure?
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Marginal Probability Distribution on Model Parameters

Existing instruments (NOMAD/NIMROD) can provide measurements below 
the precision threshold. 

Can we recover our original model from the structure?



Summary and Key Takeaways

● Inverse problems are useful for interesting chemistry, including scattering analysis, 
coarse-graining, and atomistic force field development.

● Bayesian uncertainty quantification is a rigorous framework to understand our 
confidence in our models.

● We need ML accelerated approaches to populate Bayesian likelihood distributions.

● Bayesian UQ can help answer fundamental questions around interatomic forces, 
enable active learning approaches using decision theory, and rigorously incorporate 
experimental data into atomistic models.
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