

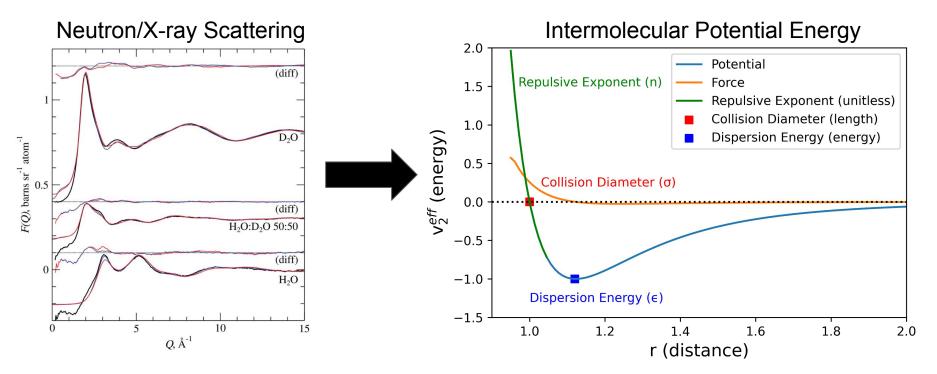
Learning Interatomic Forces from Experimental Measurements of Fluid Structure

Presenter: Brennon L. Shanks

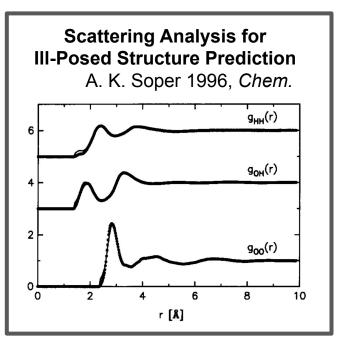
Harry W. Sullivan Abdur R. Shazed Michael P. Hoepfner University of Utah, Department of Chemical Engineering

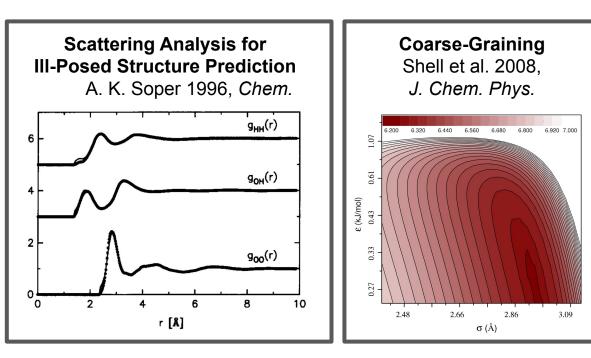
AIChE Machine Learning for Soft and Hard Materials II

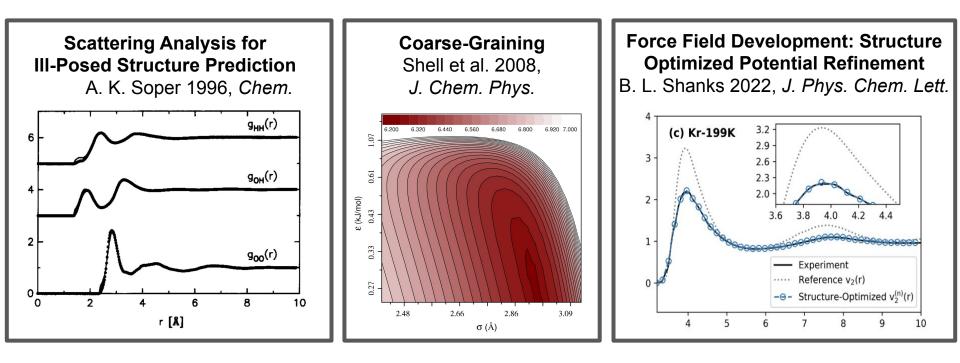
Predicting Intermolecular Potentials from Scattering is a Historic Inverse Problem

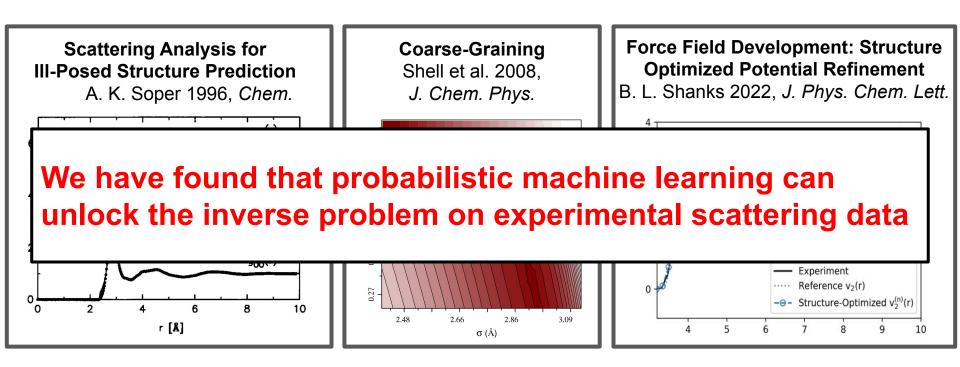


If the structure and potential energy of an ensemble are known, we can (in principle) recover thermodynamic properties of a system through statistical mechanics.



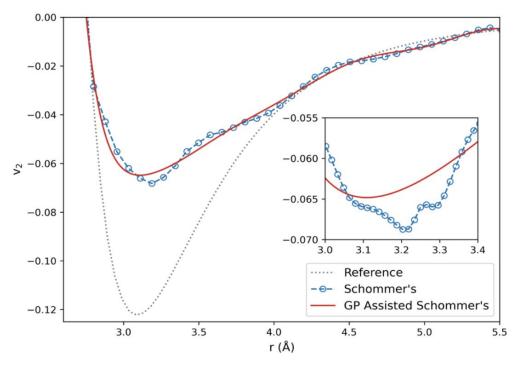




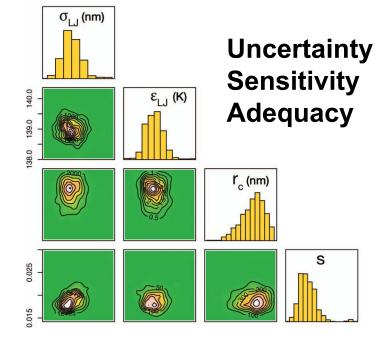


Probabilistic ML Approaches to the Structure Inverse Problem

Non-Parametric Approaches



Parametric Bayesian Optimization

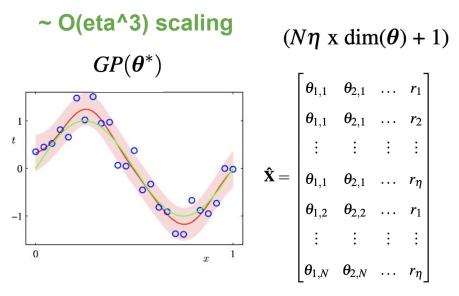


Marginal Posteriors on LJ Parameters Koumoutsakos 2012, *J. Chem. Phys.*

Evaluating the Bayesian probability distributions is easy! Just run 100,000+ molecular simulations to populate the model parameter space and you're done!

Evaluating the Bayesian probability distributions is easy! Just run 100,000+ molecular simulations to populate the model parameter space and you're done!

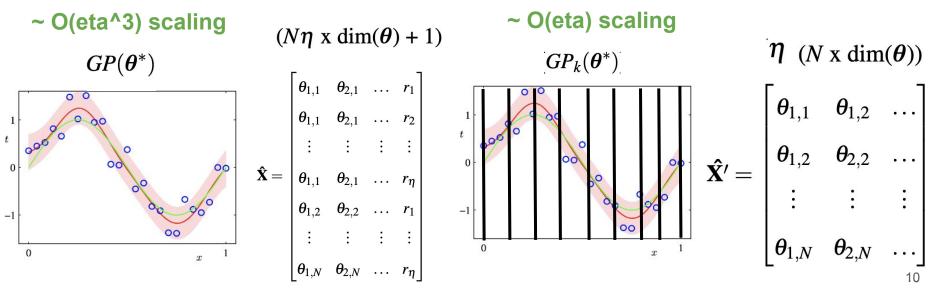
Instead, we train a GP surrogate model on properties from MD trajectories.



Evaluating the Bayesian probability distributions is easy! Just run 100,000+ molecular simulations to populate the model parameter space and you're done!

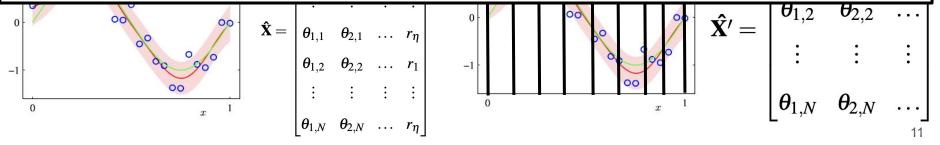
Instead, we train a GP surrogate model on properties from MD trajectories.

Local GPs are a **greedy**, low dimensional representation of a GP



Evaluating the Bayesian probability distributions is easy! Just run 100,000+ molecular simulations to populate the model parameter space and you're done!

By assuming that points along a function are independent, the computational time to evaluate the surrogate model reduces from <u>cubic</u> to <u>linear</u> in the number of independent variables.



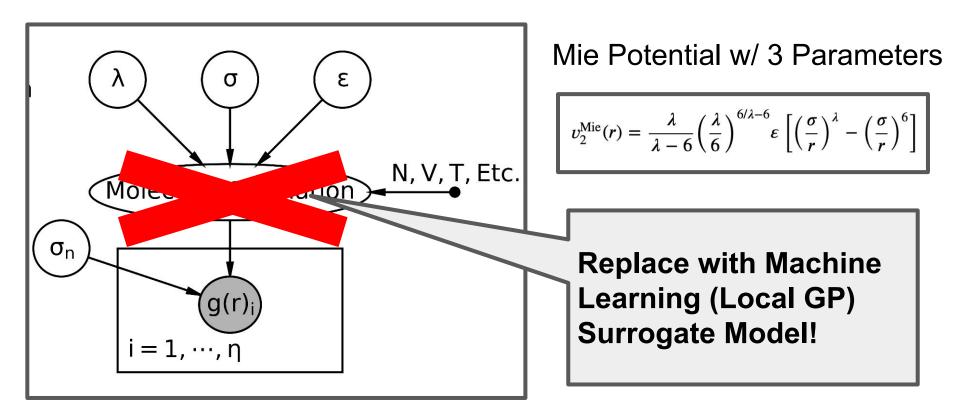
Example: Building a LGP Surrogate Model for the RDF of Liquid Ne



Mie Potential w/ 3 Parameters

$$v_2^{\text{Mie}}(r) = \frac{\lambda}{\lambda - 6} \left(\frac{\lambda}{6}\right)^{6/\lambda - 6} \varepsilon \left[\left(\frac{\sigma}{r}\right)^{\lambda} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

Example: Building a LGP Surrogate Model for the RDF of Liquid Ne



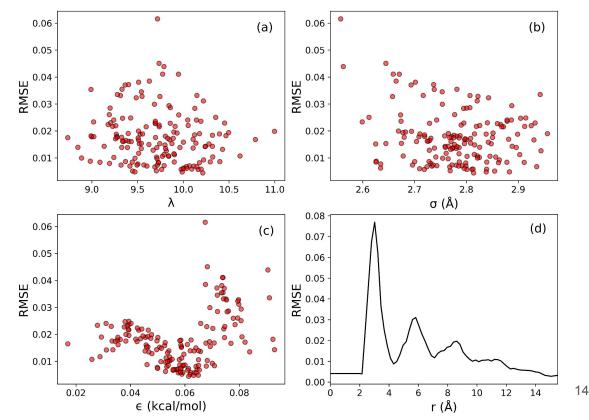
Local Gaussian Process Surrogate Models are Fast and Accurate

RMSE Over Test Set

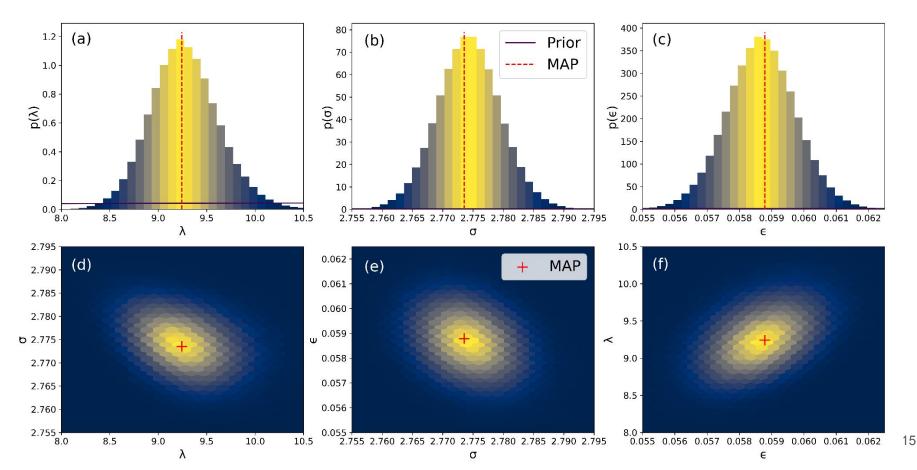
A local GP can predict the RDF 288,000x faster than MD

3500x speed up compared to standard GP

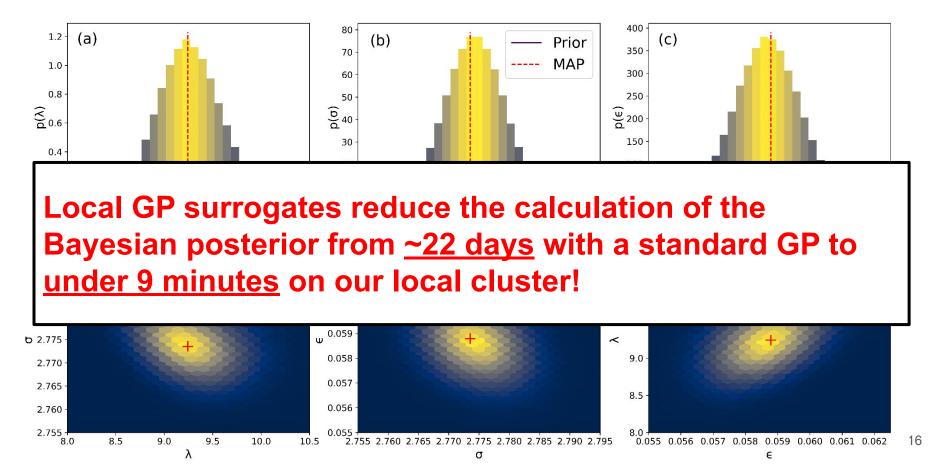
We also find that the RMSE is within the RDF uncertainty



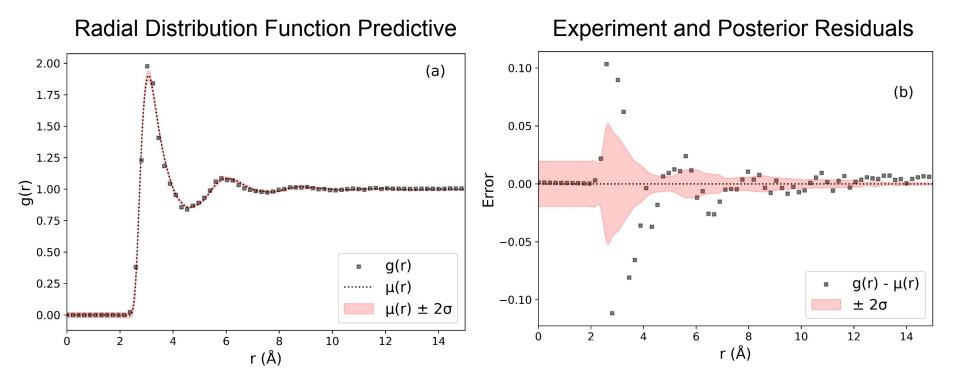
Learning Parameter Relationships from the Posterior Distribution



Learning Parameter Relationships from the Posterior Distribution



Learning from the Posterior Predictive Distribution



17

Summary and Key Takeaways

- A robust and accurate method that can predict intermolecular potentials from scattering data has numerous fundamental and practical applications.
- Probabilistic approaches to scattering analysis are necessary to extract meaningful information on intermolecular potentials.
- Local Gaussian processes can facilitate Bayesian inference by acting as fast and reliable surrogate models for complex data with built-in UQ.

$\exists \mathbf{\Gamma} \mathbf{V} > \mathsf{physics} > \mathsf{arXiv:} 2310.19108$

Physics > Chemical Physics

[Submitted on 29 Oct 2023]

Accelerated Bayesian Inference for Molecular Simulations using Local Gaussian Process Surrogate Models

B. L. Shanks, H. W. Sullivan, A. R. Shazed, M. P. Hoepfner