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The general question of model optimization

What are the best set of model parameters to represent a data target?
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Quantifying uncertainty is a problem from experiment to model
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Did I choose a 
good model?

Am I confident in the 
model parameters? 

We can’t know a priori if a 
model represents nature 
perfectly.

- TIP3P or TIP4P?

Are the model parameters 
guaranteed to be correct?

Is my data 
reliable?

Data… 
- Is noisy 
- Often require corrections
- Non-trivial to analyze 

Quantifying uncertainty is a problem from experiment to model

What can we do if we quantify this uncertainty?



Marginal Posteriors on Mie Parameters
Shanks 2024, J. Chem. Theory Comput. 10

Maximum a posteriori
“Most probable 

parameter”

Standard Deviation

We get a quantification of our biases and model sensitivity



Marginal Posteriors on Mie Parameters
Shanks 2024, J. Chem. Theory Comput. 11

Parameter 
Correlations

We get a quantification of our biases and model sensitivity



Suppose we want to maximize an objective, but obtaining training data is expensive.

To minimize training time, we want to find the optimal next training point.

—---    Estimate of Objective
● Observed Points

Max

Efficient optimization requires knowledge of uncertainty and risk



Efficient optimization requires knowledge of uncertainty and risk

Suppose we want to maximize an objective, but obtaining training data is expensive.

To minimize training time, we want to find the optimal next training point.

—---    Estimate of Objective
● Observed Points

Quantify the change in expected utility and choose the maximum value

Max



Explore
Max

Efficient optimization requires knowledge of uncertainty and risk
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Max

Efficient optimization requires knowledge of uncertainty and risk



Bayesian optimization as a framework to quantify uncertainty 

The Basic Outline of Bayesian Approaches
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(1) Define ‘prior’ probability distributions

The Basic Outline of Bayesian Approaches

17

The prior is our initial 
state of knowledge Should be wide and flat to allow 

for all (reasonable) possibilities

Bayesian optimization as a framework to quantify uncertainty 



(1) Define ‘prior’ probability distributions

(2) Define and evaluate a ‘likelihood’ function

The Basic Outline of Bayesian Approaches
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The likelihood reflects how 
accurately our model parameters 

(θ) fit the experimental data (y)

Bayesian optimization as a framework to quantify uncertainty 



(1) Define ‘prior’ probability distributions

(2) Define and evaluate a ‘likelihood’ function

(3) Solve for the ‘posterior’ distribution

The Basic Outline of Bayesian Approaches
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The posterior is the updated probability 
of parameters after observations

“When the facts change, I change my opinion. 
What do you do, sir?” - John Maynard Keynes

Bayesian optimization as a framework to quantify uncertainty 



So what exactly can we use Bayesian inference for?
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Bayes can quantify parameter sensitivity and model adequacy

Is Neutron Scattering Data a Good Target 
for classical force field optimization?

Shanks, B. L., Sullivan, H. W. & Hoepfner, M. P. Bayesian Analysis Reveals the Key to 
Extracting Pair Potentials from Neutron Scattering Data. J. Phys. Chem. Lett. 12608–12618 
(2024) doi:10.1021/acs.jpclett.4c02941.

Is my data useful for 
model training?

https://doi.org/10.1021/acs.jpclett.4c02941


Is Neutron Scattering Data a Good Target 
for classical force field optimization?

Acetate Partial Charge Optimization 

Shanks, B. L., Sullivan, H. W. & Hoepfner, M. P. Bayesian Analysis Reveals the Key to 
Extracting Pair Potentials from Neutron Scattering Data. J. Phys. Chem. Lett. 12608–12618 
(2024) doi:10.1021/acs.jpclett.4c02941.

Bayes can quantify parameter sensitivity and model adequacy

How much “wiggle room” 
do we have in our 
parameter selection?

Is my data useful for 
model training?

https://doi.org/10.1021/acs.jpclett.4c02941


Bayes can help quantify uncertainty in experimental data

Quantifying Uncertainty in Photoelectron 
Spectra Peak Positions

How confident am I in my 
data interpretation?



Comparing MD Simulations to 
Experimental Scattering Data

Quantifying Uncertainty in Photoelectron 
Spectra Peak Positions

Bayes can help quantify uncertainty in experimental data

How confident am I in my 
data interpretation?

Does my model 
(statistically) fit my data?



Neutron and X-ray Scattering Fourier Transforms

Bayes is a powerful mathematical tool for inverse problems

Enforce physics within 
machine learning



Bayes is a powerful mathematical tool for inverse problems

Learning Forces from StructureNeutron and X-ray Scattering Fourier Transforms

J. Phys. Chem. Lett. 2022, 13, 49, 11512-11520

Enforce physics within 
machine learning

What is the most probable 
solution to a physics problem 
given experimental data?



Surrogate Models – Speeding Up Expensive Calculations with ML

Machine 
Learning!

Surrogate models are fast and accurate alternatives to expensive models.



Surrogate Models – Speeding Up Expensive Calculations with ML

Surrogate models are fast and accurate alternatives to expensive models.

Madin Digital Discovery, 2023, 2, 828-847Jacobson, J. Phys. Chem. B 2014, 118, 28, 8190–8202

Generalized Polynomial Chaos Gaussian ProcessesNeural Networks

Wen, Npj Comput. Mater. 2020, 6, 1– 10,

Machine 
Learning!

https://doi.org/10.1039/2635-098X/2022


Machine Learning Potentials

Chem. Rev. 2021, 121, 16, 10073-10141

Surrogate Models – Speeding Up Expensive Calculations with ML

Can I predict the outcome of 
an expensive simulation 
without running it?



Machine Learning Potentials Estimating Classical MD Outputs with UQ

Shanks, B. L. et al. Accelerated Bayesian inference for molecular simulations using local 
Gaussian process surrogate models. J. Chem. Theory Comput. 20, 3798–3808 (2024).Chem. Rev. 2021, 121, 16, 10073-10141

Surrogate Models – Speeding Up Expensive Calculations with ML

Can I predict the outcome of 
an expensive simulation 
without running it?



Project 1: Bayesian Force Field Optimization for ECC Models
Objective: Implement Bayesian UQ on ECC force field optimization in order to…

1. Identify what experiments are valuable for force field training
2. Rigorously quantify what models are the best at reproducing data
3. Quantify “trade offs” in the model parameterization (Pareto fronts)
4. Perform optimization with as few training simulations as possible (active learning)
5. Make models more interpretable and available
6. Integrate a “turn key” approach into open source software???



Machine learning potentials (MLPs) are 
surrogate models for interatomic potentials.

MLPs promise the accuracy of ab initio 
calculations at costs near classical 
molecular dynamics. 

Hence, MLPs allow us to have higher 
accuracy forces for larger systems run 
for longer times.

Project 2: Machine Learning Potentials: A Game Changer with Trade-offs



Project 2: Machine Learning Potentials: A Game Changer with Trade-offs

Of course, these methods come with some 
severe limitations, including:

- ML method selection and 
hyperparameter tuning

- Uncertainty quantification
- Awareness of and integration with 

experimental data
- Dataset creation and curation
- Computational cost of generating 

training data



Project 2: GAPs as Physics-Informed Machine Learning Potentials

Deringer, V. L. et al. Gaussian process regression for materials and molecules. Chem. Rev. 121, 10073–10141 (2021).

The GAP framework is already a well-established approach to learn forces from DFT calculations with UQ



GAPs from DFT GP Potentials from Experimental Scattering

Bayesian 
Committee 
Machine

Experiment + Theory informed GP potential with UQ

GPs are mathematically “nice”.

 As long as we can match up 
input and output spaces, the 
BCM is trivial.

The hope is our GP corrects 
deficiencies in the underlying 
DFT by training to condensed 
phase experimental data!

Project 2: GAPs as Physics-Informed Machine Learning Potentials



Potential Synergies and Conclusions

Bayesian inference is a powerful statistical framework for uncertainty quantification
● Model optimization (force fields, DFT, partial charge selection, etc)
● Experimental data analysis
● Theoretical analysis of inverse problems
● Machine learning
● Surrogate modeling



Potential Synergies and Conclusions

Bayesian inference is a powerful statistical framework for uncertainty quantification
● Model optimization (force fields, DFT, partial charge selection, etc)
● Experimental data analysis
● Theoretical analysis of inverse problems
● Machine learning
● Surrogate modeling

Current projects
1. Bayesian optimization of ECC force field parameters (error estimation, sensitivity 

analysis, model comparison)
2. Uncertainty-aware, physics-informed machine learning potentials



Thank you!

If you see any potential synergies with your work and Bayesian / ML methods let’s talk 
during the discussion section!! 

Are you ML curious? 
Machine Learning Advances in Molecular Physics Seminar - Thursdays @ 4pm
Email shanks.brennon@uochb.cas.cz to join the mailing list.

Webpage: https://bshanks.netlify.app

mailto:shanks.brennon@uochb.cas.cz
https://bshanks.netlify.app

