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Abstract

Deriving transferable pair potentials from experimental neutron and X-ray scattering measure-

ments has been a longstanding challenge in condensed matter physics. State-of-the-art scatter-

ing analysis techniques estimate real-space microstructure from reciprocal-space total scatter-

ing data by refining pair potentials to obtain agreement between simulated and experimental

results. Prior attempts to apply these potentials with molecular simulations have revealed

inaccurate predictions of thermodynamic fluid properties. In this letter, a machine learning

assisted structure-inversion method applied to neutron scattering patterns of the noble gases

(Ne, Ar, Kr, and Xe) is shown to recover transferable pair potentials that accurately reproduce

both microstructure and vapor-liquid equilibria from the triple to critical point. Therefore, it

is concluded that a single neutron scattering measurement is sufficient to predict macroscopic

thermodynamic properties over a wide range of states and provide novel insight into local

atomic forces in dense monoatomic systems.

TOC Graphic

2



Advances in neutron and X-ray scattering analysis have significantly furthered our understand-

ing of self-assembly and dynamic transport properties in dense fluid systems.1,2 Scattering analysis

is therefore an important and necessary component in the development and validation of atomistic

force fields aimed at predicting both micro- and macroscopic thermodynamic properties over a

wide range of states. However, strikingly contradictory predictions between experimental and

simulated microstructures have been reported in relatively simple systems, including monoatomic

liquid metals,3 aromatic hydrocarbons,4 and water.5 Given the proliferation of accessible neutron

and X-ray scattering instrumentation, advances in computational analysis, and development of ma-

chine learning approaches, it is relevant to revisit whether scattering data can improve force fields

for fluid property predictions and provide insight into local atomic forces.

One approach to benchmark force fields to scattering data is to calculate the underlying in-

teratomic potentials from the experimental pair correlation functions, the so-called inverse prob-

lem of statistical mechanics. A number of well-established inversion techniques have been pro-

posed, including Ornstein-Zernike (OZ) integral relation methods,6–10 Yvon-Born-Green (YBG)

theories,11–15 Schommer’s algorithm,16 hypernetted chain methods,17,18 the generalized Lyubart-

sev–Laaksonen approach,19–21 empirical potential structure refinement (EPSR),22 and a neural

network.23 However, there is little evidence that interatomic potentials obtained from these tech-

niques can reliably predict thermodynamic behavior for real liquids. For example, Soper showed

that O-O and H-H site-site interatomic potentials derived from EPSR applied to scattering data

of liquid water predict a 4 times more negative excess internal energy compared to the experi-

mental value22 and later concluded that EPSR cannot be used to derive a reliable set of site-site

pair potentials for a given system.24 A recent scattering study on supercritical krypton found rapid

short-range oscillations in EPSR-derived interatomic potentials that led the authors to conclude that

augmentation of the EPSR algorithm is required to obtain a more accurate representation of the

real physical system.25 Additionally, the remaining studies on structure-inversion of real liquids

reported no validation of the interatomic potentials to predict fluid properties.26–30 Notably, in a re-

view of structure-inversion methods it is opined that the general purpose of these techniques is not
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to derive or evaluate interatomic potentials, but rather to determine molecular configurations that

are consistent with the scattering data.31 Therefore, it remains to be shown if scattering derived

potentials can predict atomic trajectories consistent with experimental scattering measurements

while also accurately modeling other thermodynamic properties.

The atomic length scale probed by experimental scattering measurements also confers an ad-

ditional opportunity, specifically whether it is possible to learn details of the local interactions

independent of assumptions on a specific model potential form (e.g., 12-6 Lennard-Jones). For

example, the rate of short-range repulsive decay indicates the propensity of an atom to deform

in a collision, such that relaxation from an infinitely steep potential wall to a finite exponential

or power-law decay represents the transition from hard- to soft-particle collision dynamics. The

approximate collision diameter may be estimated by the radial position where the potential energy

intersects zero, and the pairwise radial separation of zero force describes the effective disper-

sion energy. Provided structure-optimized potentials demonstrate the ability to predict emergent

thermodynamic properties, their application provides a bridge between local atomic physics and

continuum behavior.

In this letter, force fields were determined for four noble liquids (Ne, Ar, Kr, Xe) using a

machine-learning augmented Schommer’s algorithm, referred to as structure-optimized potential

refinement (SOPR), to refine pair potentials and obtain convergence between simulated and ex-

perimental pair distribution functions. Modifications to an initial reference potential are informed

by numerical implementation of the point-wise Henderson’s inverse theorem and augmented via

Gaussian process regression with a squared-exponential kernel function described in Equations

(11) and (14), respectively. The structure-optimized potentials predict excellent representations of

both the experimental pair distribution functions (Figure 1) and saturated vapor-liquid fluid prop-

erties. Consequently, structure-optimized potentials are validated using experimentally-consistent

observations on both the micro- and macroscopic length scales, motivating the analysis of spe-

cific properties of the generated potentials. Additionally, the monoatomic structure and spherical

symmetry of the noble gas system facilitates the comparison of the structure-optimized potentials
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(Figure 2) to reference ab initio potentials obtained in the low-density state from coupled cluster

theory,32–35 referred to as reference quantum dimer potentials. This comparison reveals state-

dependent changes of many-body forces present in the experimental systems that were collected at

states with varying reduced temperatures (Tr) relative to the critical point.

Figure 1: Reference potential radial distribution functions (grey dotted line) compared to the
converged simulated radial distribution functions (blue circles) and experimental radial distribution
functions (black line). Inset figures show the first solvation shell of the radial distribution function.

The structure-optimized potentials collected for fluids near their critical point (Ne-42K, Kr-

199K, Xe-274K at Tr = 0.95) exhibit softer repulsive decay, insignificant change to the collision

diameter, and a substantial reduction in dispersion energy with respect to reference quantum dimer

potentials. Thus, the ensemble averaged many-body behavior near the critical point results in softer

particle collisions with decreased particle attraction. Near the triple point (Ar-85K at Tr = 0.56),

structure-optimized potentials show no significant change in the repulsive exponent, a 1.5 % in-

crease in collision diameter, and a reduction in dispersion energy (Figure 2 (b)) compared to the
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quantum dimer potential. Many-body effects therefore had a negligible effect on the particle stiff-

ness while decreasing particle attraction near the triple point. The observation that the dispersion

energy correction was relatively smaller for the near triple point potential compared to the near

critical point potentials (Table 3) suggests that the dispersion energy is a function of the thermody-

namic state, which is discussed in the context of temperature-dependent many-body effects later.

Figure 2: Tabulated structure-optimized potentials (blue) and (l � 6) Mie potentials determined
with Bayesian regression (red) are shown with reference quantum dimer potentials (grey). Inset
figures show the short-range repulsive region of the corresponding structure-optimized potential.

It is instructive to compare the structure-optimized potentials to widely employed transferable

pair potential functions, such as the (l �6) Mie potential,
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where l is the short-range repulsion exponent, s is the collision diameter (Å), and e is the dis-
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persion energy (kcal · mol�1).36 The (l � 6) Mie potential offers increased flexibility over the

standard (12�6) Lennard-Jones potential since the repulsion exponent may be varied to produce a

wider array of potential shapes. Structure-optimized potentials were fit to the (l �6) Mie function

via Bayesian regression and plotted as red lines in Figure 2. Note that the excellent quality-of-

fit of structure-optimized potentials to the (l � 6) Mie function indicates that the fitted parame-

ters (listed in Table 1) can closely approximate the thermodynamic predictions of the tabulated

structure-optimized potentials.

Table 1: Summary of (l �6) Mie potential parameters determined by Bayesian linear regression
and modifications to the reference quantum dimer potentials in terms of the (s ,e) parameteriza-
tion. Ds and De are shown as percent deviations from the ab initio parameter values given in Table
3.

Element l s (Å) e (kcal/mol) Ds (%) De (%)
Ne 11 2.77 0.063 0.31 -48.4
Ar 12 3.40 0.239 1.50 -16.7
Kr 14 3.58 0.359 -0.08 -38.3
Xe 13 3.91 0.484 0.51 -40.3

Transferability of the potentials was assessed by performing vapor-liquid equilibrium (VLE)

calculations from the triple to critical point using histogram-reweighting grand canonical Monte

Carlo (GCMC) simulations in the GPU-Optimized Monte Carlo (GOMC) simulation package37

(see Supporting Information). Figure 3 shows vapor and liquid densities for structure-optimized

potentials fit to (l � 6) Mie potentials (red triangles) compared with experimental data (black

lines) compiled from the National Institute of Standards and Technology (NIST).38 The Ne-42K

structure-optimized force field predicts liquid densities within 0.1-2.5% relative error between 30-

40K, on par with the top-performing Lennard-Jones force field from Vrabec et al.39 and out-

performing the next closest model40 by as much as 10%. The Ar-85K, Kr-199K, and Xe-274K

force fields are less accurate, with liquid density relative errors of 0.2-5% (85-140K), 6.2-10.1%

(120-180K) and 4.7-8.4% (190-260K), respectively. Simulated critical points determined with the

Ising-type critical point scaling law41 and law of rectilinear diameters42 are provided in Table 2.
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Table 2: Simulated critical temperatures (T sim
C ) and densities (rsim

C ) with statistical uncertainty
calculated from 5 independent GCMC simulations. Percent error between simulated and experi-
mental critical temperature and density are also shown.

Element T sim
C (K) T err

C (%) rsim
C (kg/m3) rerr

C (%)
Ne 43.84 ± 0.06 -1.33 488.4 ± 1.08 0.91
Ar 154.27 ± 0.16 2.40 528.9 ± 0.84 -1.32
Kr 216.58 ± 0.60 3.36 952.7 ± 3.62 5.04
Xe 300.99 ± 0.28 3.98 1142.9 ± 1.76 4.85

Figure 3: (Top) Simulated phase coexistence curves (red triangles) are shown with experimental
phase data (black lines). Simulated and experimental critical points are given by the open red circle
and open black square, respectively. (Bottom) Clausius-Clapeyron plots of the simulated pressure
(red triangles) compared to experimental pressures (black lines).

A recently developed series of (l �6) Mie force fields benchmarked to noble gas vapor-liquid

equilibrium (VLE) provides an excellent comparison to the structure-optimized force fields pro-

posed in this work. In general, both force fields predict similar repulsion exponents (l ) and disper-

sion energies (e). One interesting observation is that both the structure and VLE-optimized force

fields predict an increase in the repulsive exponent with increasing atomic weight. Mick et al.43
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demonstrated that varying the repulsive exponent improved the simultaneous prediction of satu-

rated densities and vapor pressures, supporting the conclusion that static structure is sensitive to

subtle variations in the pair potential. The most consequential difference between the two models

is that the structure-optimized force field gives systematically lower predictions for the collision

diameter (s ), causing the simulated liquid density to be overestimated compared to the experi-

mental value. It is notable that the reported differences in the collision diameter (0.01-0.05 Å) are

approximately one order of magnitude smaller than the real-space resolution of the experimental

diffraction data (0.4-0.7 Å). Modern, high-flux scattering instruments can achieve real-space reso-

lution of approximately 0.05 Å, on the same order as the error in the collision diameter, suggesting

that more accurate potentials may be determined from repeating neutron scattering measurements

on noble gases with modern instruments.44

The observation that structure-optimized potentials can estimate vapor-liquid coexistence be-

havior from a single neutron scattering measurement suggests that structure-inversion may be a

promising approach to develop force fields for materials where experimental phase behavior is ab-

sent or impractical to obtain. The phase behavior and criticality of liquid uranium (U) is one of

many important and unresolved examples relating to nuclear reactor design and safety analysis.

Neutron diffraction data on solid b -U exists to temperatures as high as 1045K45 and X-ray diffrac-

tion patterns of g-U close to the melting point (1405K) are well-characterized,46 but the phase

coexistence line and critical point remain unknown, with critical temperature predictions rang-

ing from 5000-13000K.47 However, our results suggest that scattering measurements of liquid U

may enable estimation of vapor-liquid phase coexistence via GCMC simulations with a structure-

optimized embedded atom model or set of state dependent structure-optimized potentials.

Structure-inversion may also enable quantification of liquid state many-body effects. Quan-

tum calculations on Kr-Ar-Ar and Ar-Ar-Kr trimers have revealed that noble gases experience

two important many-body effects: (1) 3-body exchange repulsion and (2) the exchange/dispersion

quadropole induced dipole.48 The averaged pairwise influence of these many-body interactions

decreases the short-range repulsion exponent and the dispersion energy,49,50 which is in agree-
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ment with the behavior observed in the structure-optimized potentials obtained near the critical

point. Self-consistent field calculations of electron distributions in Ar clusters have shown that the

electron cloud is compressed at higher densities, and that this compression reduces the probabil-

ity of exchange repulsion.51 Additionally, experimental results from collision-induced depolarized

light scattering on compressed H2 demonstrated that exchange-dependent many-body interactions

become more prominent with increasing temperature.52 It is therefore expected that many-body

effects in noble gases should be less dominant near the triple point, explaining why the short-

range decay rate for the Ar-85K structure-optimized potential was unchanged and the well-depth

correction smaller than in the near critical point states. This conclusion is also supported by ana-

lyzing trends in the structural many-body correction for each fluid at near triple and critical point

conditions (see Supporting Information). Further analysis with quantum mechanical and explicit

3-body dispersion models, such as the Axilrod-Teller potential,53–55 are reserved for future study

on high-resolution scattering data sets obtained with state-of-the-art neutron techniques.

We demonstrate that transferable pair potentials can be reconstructed from a single neutron

scattering measurement for monoatomic liquids, and further; that structure-inversion techniques

have fundamental and interdisciplinary applications bridging experimental scattering, molecular

simulation, and quantum mechanics. Of particular interest is the prediction of thermodynamic

properties at extreme conditions, such as high temperature and pressure materials, molten salts,

and liquid metals. The inclusion of experimental diffraction results for optimizing effective pair

potentials may also facilitate improvements to local structure predictions for fluid mixtures and

molecular liquids. However, incoherent and inelastic scattering corrections,56 as well as non-

uniqueness of the partial structure factor decomposition, will need to be addressed to extend the

presented techniques to complex liquids. Finally, the methods presented in this letter may be

applied to benchmark force fields for coarse-grained simulations, which has seen a growing interest

in structure-inversion techniques.57,58

10



Theory and Computational Methods

The following section provides the relevant definitions, statistical mechanics, and necessary com-

putational details of the proposed machine learning assisted structure refinement method. First, the

microstructure is considered as the local atomic density correlation and is formalized by counting

the number of atomic neighbors as a function of position with respect to a reference atom and

taking the ensemble average,

g(r) = 1
r

⌧
1
N

N

Â
i=1

N

Â
j=1

d 3(r� r j + ri)

�
(2)

where g(r) is referred to as the radial distribution function, d 3 is the three-dimensional Dirac delta

function, r is the thermodynamic density and N is the total number of particles in the system. The

radial distribution function and pair correlation function, h(r), are related by, h(r) = g(r)�1. Due

to the lack of long-range order in liquids, the isotropically-averaged radial distribution function

is related to the experimentally observed structure factor, S(Q), which for a monoatomic liquid is

given by,

S(Q) = 1+
4p
Qr

hbi2

h| f (Q)|2i

Z •

0
r[g(r)�1]sin(Qr)dr (3)

where Q is the momentum transfer, b is the scattering length density, f (Q) is the form factor, and

r is the atomic number density.59

The potential energy can be written as a sum of n-body potential energy terms such that,

U(r) =

external fieldz }| {
N

Â
i

v1(ri) +

two-bodyz }| {
N

Â
i=1

N

Â
j 6=i

v2(ri j)+

many-bodyz }| {
N

Â
i

N

Â
j 6=i

N

Â
k 6= j

v3(ri jk)+ ... (4)

where vp(r1,...,p) is a position dependent function that assigns a potential energy to a subset con-

taining p  N atoms for a given configuration ri,...,p.60 We further simplify this expression by

neglecting the external field contribution (p = 1) and averaging higher-order many-body terms
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(p � 3) into a state-dependent pair term,

U(r;r,T ) =
N

Â
i=1

N

Â
j 6=i


v2(ri j)+ vm

2 (ri j;r,T )
�

(5)

such that vm
2 (ri j;r,T ) is explicitly dependent on the atomic positions and implicitly dependent on

the physical state (temperature, density, etc). The bracketed quantity in Equation (5) is defined as

the effective pair potential,

ve f f
2 (ri j;r,T ) = v2(ri j)+ vm

2 (ri j;r,T ) (6)

which cannot be determined exactly for a state-dependent ensemble61 but can be optimized to

reproduce a set of experimentally observed thermodynamic properties, such as structure,62 heat of

vaporization,63 or vapor-liquid equilibrium.37 The pair potential defined in Equation (6) is the most

common non-bonded term in the Hamiltonian of classical force fields and is typically modeled as

a hard-particle, Lennard-Jones, (l �6) Mie, Buckingham, or Yukawa potential.

Pairwise additivity imposes important theoretical constraints on the relationship between the

potential energy and pair correlation function. Henderson proved that for pairwise additive, con-

stant density ensembles that there exists a one-to-one map between the effective pair potential and

the radial distribution function up to an additive constant.64–66 In monoatomic liquids with spheri-

cal symmetry, the structure-potential uniqueness theorem on a finite radial interval [r0,r00] such that

r00 > r0 and r0,r00 2 R+
0 , is equivalent to,

Z r00

r0
Dv2(r)Dg(r)dr  0 (7)

where Dv(r) and Dg(r) are the difference between a model (M) and target (T) pair potential and

radial distribution function, respectively.67
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Dv2(r) = vM
2 (r)� vT

2 (r)

Dg(r) = gM(r)�gT (r)
(8)

Note that the structure-potential uniqueness theorem in the form of Equation (7) is written in terms

of the r-coordinate only due to spherical symmetry. Initially, Equation (7) appears uninformative

since the inequality prevents direct calculation of the target potential at any r value. The situation is

amenable under the assumption that the integrand is continuous and differentiable, so that Equation

(7) can be rewritten using the mean value theorem,

(r00 � r0)
⌧

Dv2(r)Dg(r)
�r00

r0
 0 (9)

where the bracketed quantity represents the average of Dv2(r)Dg(r) over finite interval [r0,r00].

Notice that for this inequality to be satisfied in the limit (r00 � r0) ! 0, it must hold at any point

ro 2 r so that,

Dv2(ro)Dg(ro) 0 (10)

which is true only when Dv2(ro) 6= 0 and Dg(ro) 6= 0. The practicality of this point-wise structure-

potential uniqueness theorem is now clear, since Equation (10) prescribes what direction that an

initial guess for the model potential should be corrected given the difference between the model

and target experimental radial distribution function at any point ro 2 r; namely, by decreasing the

potential if Dg(ro) is negative and increasing the potential if Dg(ro) is positive. While Henderson’s

structure-potential uniqueness condition has been implemented previously to obtain empirical esti-

mates of pair potential functions in Schommer’s algorithm and EPSR, this derivation demonstrates

the validity of its use at an arbitrary point without the potential of mean force approximation

g(r) = exp[�bve f f
2 (ri j;r,T )] where b = 1

kBT , which only holds in the dilute limit.68

The structure-potential uniqueness condition is implemented via iterative refinement of a ref-

erence potential, v0
2(ri), with an energy scaled, continuous sum of the radial distribution function
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error such that,

v(n)
0

2 (ri) = v0
2(ri)+ gb�1 Â

n
Dg(n)

0
(ri) (11)

where i is the radial index of the tabulated potential, v(n)
0

2 (ri) is the predictor estimated pair potential

at iteration n, b is the inverse thermal energy (kBT )�1, and 0 < g  1 is an empirical scaling

constant to dampen the potential correction. Comparing the refinement Equation (11) to Equation

(6), it is clear that if v0
2(ri) is selected as the quantum dimer potential that v(n)

0

2 (ri) is the estimated

effective pair potential and gb�1 Ân Dg(n)
0
(ri) is the pair averaged many-body term. Note that the

prime notation in v(n)
0

2 (ri) denotes that the pair potential is the predictor estimate before smoothing

and treatment of numerical and experimental uncertainty.

In a standard Schommer’s algorithm, the potential predicted by Equation (11) is passed to

the next iteration without smoothing or uncertainty quantification, which has been shown to re-

duce the methods robustness.17,31 Here a squared-exponential kernel Gaussian process (GP) is

applied to the predictor estimate to account for numerical fluctuations arising from the molecular

dynamics simulations as well as systematic over-fitting to uncertain experimental data. A GP is a

non-parametric stochastic process, equivalent to an infinitely wide neural network of a single layer,

that generalizes the concept of probability distributions to functions.69 In this implementation, the

GP takes the potential estimated by Equation (11) as an input and returns a Gaussian probability

distribution of continuous and infinitely differentiable functions fitting the predictor estimate.70

Thus, a GP acts as an uncertainty propagator and smoothing function that, by nature of its Gaus-

sian form, inherits an analytical Fourier transform that equivalently represents the data in real- or

reciprocal-space without introducing significant truncation error.71 Parallel techniques to enhance

the accuracy of Fourier transforms in inverse problems, such as fitting structure factors to Poisson

series expansions implemented in the EPSR and Dissolve packages and Tóth’s Gauss-Newton pa-

rameterization and Golay–Savitzky smoothing,20,21 can therefore be replaced with GP regression.

Notably, SE-GP regression can be integrated into any existing iterative predictor-corrector without

modifications to the base algorithm.
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The predicted structure-optimized potential is then expressed as a k-multivariate normal distri-

bution (N ) of random variables such that,

v(n)
0

2 (r1),v
(n)0
2 (r2), ...v

(n)0
2 (rk)⇠ N (µ(r),K(ri,r j)) (12)

where r1 < r2 < ... < rk are the radii positions for the potential, k is the number of points in

the structure-optimized potential, µ(r) is a mean function, and K(ri,r j) is a squared-exponential

covariance function (or kernel) describing the relatedness of observations v(n)
0

2 (ri) on v(n)
0

2 (r j).

Here the squared-exponential kernel is applied,

K(ri,r j) = s̄2e�
(ri�r j)

2

2`2 +di js2
noise (13)

where s̄2 is the expected variance of the interatomic potential, ` is the correlation length and s2
noise

is the variance due to numerical latent effects. Notice that if the distance between two points ri and

r j is small, exp(ri�r j)2/2`2 approaches unity and v(n)
0

2 (ri) and v(n)
0

2 (r j) are strongly correlated. As

the distance between ri and r j increases, exp(ri � r j)2/2`2 vanishes such that v(n)
0

2 (ri) and v(n)
0

2 (r j)

are uncorrelated. The hyperparameters (s̄ , `, snoise) are optimized by maximizing the marginal

likelihood (model evidence) p(v(n)
0

2 (r)|r, s̄ , `, snoise).

Regression of v(n)
0

2 (r) over an arbitrary set of radii r0 = {r0i} 3 r1  r01 < r02 < ... < r0m  rk is

equal to the mean of the k-variate normal distribution,

v(n)2 (r0) = [KT
r0,r �s2

noiseI]K�1
r,r v(n)

0

2 (r) (14)

where v(n)2 (r0) is the final structure-optimized potential at iteration n and Kr0,r is the squared-

exponential covariance matrix between coordinate representations r0 and r. Figure 4 shows that

GP regression smooths numerical artifacts in the interatomic force when the length scale hyper-

parameter is on the order of ` ⇠ 1 Å. A detailed comparison between a standard and GP assisted

Schommer’s algorithm is provided in the Supporting Information.
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Figure 4: The force calculated from the Xe-274K tabulated potential (blue circles) compared to a
non-parametric GP regressed potential at three different length-scale parameters (` = 0.05, 0.25,
1.00 Å) (orange, green, and purple line).

The GP regressed structure-optimized potential is then applied in the molecular simulation

corrector to calculate a simulated radial distribution function, g(n)(r0). The molecular simulation

corrector is a Canonical (NV T ) molecular dynamics simulation performed in HOOMD-Blue.72

MD simulations were initiated with a 500 atom fcc-lattice at the experimental density and equili-

brated with Langevin dynamics for 5⇥103 timesteps (dt = 5 femtoseconds). Tabulated structure-

optimized potentials were truncated at 3rvdW with analytical tail corrections, and simulated radial

distribution functions were calculated with MDAnalysis73,74 from 1⇥ 105 timestep trajectories

sampled at 100 timestep intervals. Convergence is checked against the average squared error be-

tween the simulated and experimental radial distribution function such that h[Dg(n)(r0)]2i< 10�4,

which generally is satisfied within 5-10 iterations at scaling constant g = 0.2.

Table 3: Reduced temperature (Tr = T/Tc) and atomic density (r) are listed for the neutron
scattering experimental conditions. Reference van der Waal radii (rvdW ) are used to define pair
potential truncation in molecular dynamics simulations.75 sai is defined as the radius where the
quantum dimer pair potential transitions from positive to negative potential energy and eai is the
potential minimum.

Element Tr r (1/Å3) rvdW (Å) sai (Å) eai (kcal/mol)
Ne 0.95 0.02477 2.91 2.76 0.122
Ar 0.56 0.02125 3.55 3.35 0.287
Kr 0.95 0.01187 3.82 3.58 0.582
Xe 0.95 0.00881 4.08 3.89 0.811
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Structure-inversion was initiated with a target experimental radial distribution function and a

reference (or model) pair potential, v0
2(ri). Experimental radial distribution data determined with

elastic neutron scattering76–78 were compiled at the thermodynamic state conditions listed in Ta-

ble 3. Reference quantum dimer potentials were obtained via couple-cluster theory/t-aug-cc-pV6Z

quality basis sets with spin-orbit relativistic corrections. In practice, any of the numerous exist-

ing pair potentials for the noble gases may be applied as a reference potential with equivalent

outcomes for the structure-optimized potential (see Supporting Information). However, selecting

the quantum dimer pair potential as the reference guarantees that the structure-optimized refine-

ment correction is equal to the pairwise many-body contribution to the effective pair potential,

vm
2 (ri j;r,T ) = gb�1 Ân Dg(n)(r0i).
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Supporting Information Available

The following files are available free of charge as supporting information for the results presented

in this manuscript.

• si.pdf: Grand canonical Monte Carlo simulation details, data tables of vapor-liquid phase

equilibrium data, liquid density error compared with other force fields, convergence stability

analysis, a demonstration of a standard versus machine learning augmented Schommer’s

algorithm, and potentials derived for Ne, Kr, and Xe at both the near triple and critical point

conditions are provided.
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• data.zip: Compressed .zip file containing .txt files of experimental, reference, and final sim-

ulated radial distribution functions and interatomic potentials.

Example code can be accessed at: https://github.com/hoepfnergroup/SOPR.
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