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ABSTRACT

The inverse problem of statistical mechanics is an unsolved, century-old challenge to learn classical
pair potentials directly from experimental scattering data. This problem was extensively investigated
in the 20th century but was eventually eclipsed by standard methods of benchmarking pair potentials to
macroscopic thermodynamic data. However, it is becoming increasingly clear that existing force field
models fail to reliably reproduce fluid structures even in simple liquids, which can result in reduced
transferability and substantial misrepresentations of thermophysical behavior and self-assembly. In
this study, we revisited the structure inverse problem for a classical Mie fluid to determine to what
extent experimental uncertainty in neutron scattering data influences the ability to recover classical
pair potentials. Bayesian uncertainty quantification was used to show that structure factors with
random noise smaller than 0.005 to ∼ 30 Å

−1
are required to accurately recover pair potentials

from neutron scattering. Notably, modern neutron instruments can achieve this precision to extract
classical force models to within approximately ± 1.3 for the repulsive exponent, ± 0.068 Å

−1
for

atomic size, and 0.024 kcal/mol in the potential well-depth with 95% confidence. Our results suggest
the exciting possibility of improving molecular simulation accuracy through the incorporation of
neutron scattering data, advancement in structural modeling, and extraction of model-independent
measurements of local atomic forces in real fluids.

1 Introduction

Reconstructing interatomic potentials from experimental scattering data is a historic inverse problem in statistical
mechanics, motivated by the idea that complete knowledge of the effective interatomic potential with the atomic
correlation functions allows for all thermodynamic properties of a classical liquid to be calculated [1]. While it
has become widely accepted that liquid state systems exhibit significant many-body and quantum mechanical (both
electronic and nuclear) interactions [2] that influence molecular dynamics, the fact that empirical molecular simulations
remain the gold-standard for efficient and accurate liquid state materials modeling has maintained the significance and
impact of the inverse problem in contemporary physics. However, despite over a century of research, with seminal
works by Ornstein and Zernike [3–5], Yvon, Born, and Green [6], Schommer [7], and Lyubartsev and Laaksonen
[8], there is surprisingly little to no evidence that these techniques can reliably extract force field parameters from
experimental scattering data [9]. Furthermore, there is growing evidence that existing force fields provide inaccurate
representations of fluid structure when compared to experimental estimates [10, 11]. With the advent of state-of-the-art
diffractometers and the rise of machine learning and high-performance computing for robust uncertainty quantification,
it is relevant to revisit and contextualize prior and current work to better understand how to resolve this longstanding
challenge.

Serious attempts at determining the interatomic potential from experimental scattering data began in the 1950’s.
Henshaw (1958) [12] and later Clayton and Heaton (1961) [13] speculated that the ratio between the atomic collision
radius and first solvation shell radius was related to the approximate width of the interatomic potential bowl. While this
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concept cannot directly extract the interatomic potential from the radial distribution function, it was used to conclude
that argon and krypton could be reasonably represented by a (12-6) Lennard-Jones potential. Weeks, Chandler, and
Anderson then introduced a separation of the pair potential into repulsive and attractive parts, in which they concluded
that the repulsive part alone produces structure factors nearly identical to the repulsive and attractive parts taken
together [14]. Henderson (1974) then proved that for a pairwise additive and homogeneous system with equal radial
distribution functions that the effective interatomic potential was unique up to an additive constant [15], which was later
implemented numerically by Schommers (1983) [7] to study liquid gallium. Around the same time, Levesque (1985)
[16] proposed a modified hypernetted chain closure to the Ornstein-Zernike integral relation to calculate interatomic
potentials for liquid aluminum with fast convergence. Both studies were highly influential in the study of liquid metals,
but offered little in resolving the inverse problem in general since interatomic potentials derived from these methods
were only shown to accurately reproduce the diffusion coefficient and not other thermodynamic properties.

The most recent inverse methods applied to experimental data are Soper’s (1996) [17] empirical potential structure
refinement (EPSR) and Lyabartsuv and Laaksonen’s (1995) [8, 18, 19] inverse Monte Carlo (IMC). EPSR is an iterative
potential refinement method that is primarily used to determine real-space structures consistent with reciprocal space
scattering data in fluid and glass systems. However, Soper’s work on liquid water revealed that EPSR could not be
reliably implemented to determine pair interaction potentials for molecular simulation applications [20]. On the other
hand, IMC methods have been widely adopted for coarse-graining, in which the number of degrees-of-freedom of a
molecular model are reduced by mapping atomic coordinates to "beads" of atom clusters. While both methods have
attracted significant research interest in recent years, with the creation of an improved EPSR software package [21] and
applications of IMC in complex biological systems [22] such as DNA [23] and nucleosomes [24], the extraction of
reliable and transferable interatomic potentials from experimental scattering data remains widely under-reported and
unresolved, even for simple fluids such as noble gases.

We recently proposed structure-optimized potential refinement (SOPR) [25] as an alternative approach to extract pair
potentials from scattering data (2022). SOPR is a probabilistic iterative Boltzmann inversion (IBI) algorithm that uses
Gaussian process regression to address challenges such as numerical instability and over-fitting to uncertain experimental
data. SOPR derived potentials have demonstrated remarkable accuracy in predicting both the structural correlation
functions and vapor-liquid equilibria of noble gases. Furthermore, the short-range repulsive decay rate determined with
SOPR coincides with predictions from an independently optimized (λ −6) Mie force field for vapor-liquid equilibria
[26]. This finding represents the most complete example of the inverse problem in real systems and highlights the
potential of scattering data in studying both macroscopic thermophysical properties of liquids and improved accuracy
of local structural predictions.

The transferability of SOPR potentials raises intriguing questions regarding what factors are most important to accurately
extract local forces from scattering data. One possible explanation is that the reliability of structure inversion techniques
hinges on the quality of the experimental scattering data [27]. Levesque and Verlet (1968) speculated that experimental
scattering error of < 1% was required to determine the interaction potential within an error of 10% [28], but ultimately
concluded that it is not possible to obtain quantitative information on the potential from scattering data due to systematic
error in the experiments. However, it is currently unclear to what extent these previous attempts have been impeded by
experimental uncertainty. The reason for this knowledge gap is that rigorous uncertainty quantification and propagation
(UQ/P) is computationally demanding and requires the use of machine learning surrogate models and advanced sampling
methods [29–31] that were not available to liquid state theorists when these questions were first investigated. To test
the hypothesis that neutron instrument accuracy is essential in force field extraction therefore lies at the crossroads of
theoretical statistical physics, machine learning, and high-performance computing.

Here we assess how scattering measurement uncertainty impacts our ability to learn interatomic forces using a dataset of
in silico experimental structure factors with varying levels of noise. Bayesian optimization with a local Gaussian process
(LGP) surrogate model was then applied to extract the underlying probability distributions on the force field parameters.
Gaussian noise was introduced to a reduced Mie model structure factor with standard deviation δS, corresponding to
data collected on various neutron instruments from 1973-2022. Note that the structure factor, and consequently δS,
are unit-less quantities. Constant noise at six different standard deviations, consistent with a reactor source neutron
instrument [32], spanning from low to high uncertainty was added to a model structure factor (Figure 1).
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Figure 1: Static structure factors (colored lines) with introduced uncertainty (dotted black lines) for uniformly distributed
noise. Measurement standard deviations δS are labeled to the left of the structure factor.

By studying the parameter posterior distributions as a function of introduced uncertainty, we aimed to challenge the
assertion that structure factors are insensitive to the detailed form of interatomic interactions [33]. Using the (λ -6) Mie
parameter Bayesian posterior distributions, we quantify how interatomic interactions such as short-range repulsion,
excluded volume, and dispersion energy affect measured structure factors, shedding light on the intricate relationship
between pair potentials and structural features. Surprisingly, we find that the conclusions from prior literature stating
that details of the interatomic interaction could not be extracted from experimental structure factors were likely justified
given the data quality available at the time, but that modern neutron instruments exceed a precision threshold where
this conclusion could be overturned. These findings suggest that experimental inverse techniques were prematurely
abandoned and should be revisited.

According to our results, neutron scattering measurements determined within a standard deviation of 0.005 to a
Qmax ∼ 30 Å

−1
are sufficient for force parameter recovery. Fortunately, this level of precision is already available at

modern diffractometers, such as the Nanoscale Ordered MAterials Diffractometer (NOMAD) [34] or at other modern
instruments for sufficiently long run times. Method advancements in structure inversion, along with the improvement of
neutron facilities and measurement accuracy, may therefore be the key to unlock a wealth of opportunities for improving
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molecular models, characterizing local atomic forces, and understanding the dynamics of atoms and molecules in
relation to complex and emergent physical phenomena.

2 Computational Methods

In this study, we aimed to model how uncertainty propagates from neutron scattering data to the estimation of force
field parameters. The impact of measurement uncertainty was isolated by constraining the Bayesian analysis to a
classical model fluid. While real physical systems behave quantum mechanically and are inherently many-body in
nature, classical pairwise additive model fluids continue to be studied due their low computational cost and accurate
predictions of complex thermodynamic properties. Furthermore, our prior work has shown that SOPR potentials exhibit
potential corrections consistent with quantum mechanical calculations [25], suggesting that effective pair interactions
could be found that capture many-body and quantum mechanical contributions.

The (λ -6) Mie fluid model was selected since it is a flexible and widely successful classical model with numerous
existing and developing applications for materials modeling [26, 35]. The pairwise, non-bonded potential energy term
of the (λ -6) Mie fluid is,

vMie
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λ
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6
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where λ is the short-range repulsion exponent, σ is the collision diameter (distance), and ε is the dispersion energy
(energy) [36].

2.1 Modeling Neutron Measurement Uncertainty in a Mie Fluid Model

To model experimental uncertainty, a set of Mie fluids was simulated with sufficient sampling statistics to calculate a
highly-accurate static structure factor (δS(Q)< 0.001) to Qmax =∼ 30 Å−1). Computer generated atomic trajectories
were calculated in HOOMD-Blue [37]. MD simulations were initiated with a random configuration of 500 particles
at reduced density ρ∗ = 0.1 and reduced temperature T ∗ = 1 and equilibrated with Langevin dynamics for 1× 105

timesteps (dt = 10 femtoseconds). Potentials were truncated at 3σ with an analytical tail correction, and radial
distribution functions were calculated with Freud [38]. Static structure factors are calculated via radial Fourier transform
of the radial distribution function.

Experimental measurements of structure factors are subject to uncertainty arising from various factors, including
experimental, model, and numerical sources. Uncertainties in neutron flux, energy, time-of-flight, minimum and
maximum momentum transfer (Qmin, Qmax), and data collection time contribute to uncertainty in neutron counting
statistics and the effective resolution of the instrument. Post-processing corrections for inelastic, incoherent, multiple,
and low momentum transfer scattering further contribute to uncertainty in the structure factor form [39]. These effects
result in variations in the neutron intensity that are not necessarily normally distributed [40]; however, errors from
neutron detection are normal due to the limiting behavior of the Poisson distribution for large number of counts [41].
For reactor source instruments, the variance due to these random errors remains approximately constant to a limited
Q-max (10-20 Å

−1
), while for spallation sources, the variance increases proportionally to the square of the momentum

transfer to a higher Q-max of 50-125 Å
−1

[34]. Currently, the extent to which this uncertainty influences the accuracy
and reliability of force field reconstructions remains unknown.

Uncertainty quantification was performed for reactor type neutron instruments by adding Gaussian noise with standard
deviations equal to twice the values of those indicated in Figure 1 to four replicates of the simulated structure factor.
Using multiple replicates of the noisy structure factor as a data target reduces the chance of over fitting to a single,
randomly generated structure factor. Of course, this modeling approach is not directly consistent with an actual
scattering measurement which is typically reported as a single measurement over a fixed length of time. However, it is
well-known that the standard deviation in neutron counting statistics is proportional to the square-root of the number of
counts [41]. Assuming that neutron counts are equally distributed over the course of a measurement, we then expect
that four structure factor replicates with twice the standard deviation of the target structure factor is approximately
equivalent to the single target scattering pattern.

Bayesian analysis was then performed over 16 in silico experimental conditions on a 4× 4 equal spaced grid with
σ = [1.85,1.89,1.93,1.97], ε = [0.86,0.80,0.74,0.70] and fixed λ = 12. Since spallation type neutron instruments
have a Q2-dependent random error, UQ on the constant error can be interpreted as an uncertainty upper bound for
spallation type instruments. Uncertainty levels were selected based on published data of structure factors measured
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on neutron instruments from the early 1970’s to 2022. Notably, a classic argon data set collected at the Omega West
reactor (1973) [42] is well approximated by constant noise with variations in S(Q) of approximately δS = 0.05, as
noted in Figure 1. Similarly, krypton data collected on D4B (1993)[43] is approximated by the constant δS = 0.025
case, while modern instruments such as NOMAD and NIMROD (>2010) exhibit uncertainty distributions similar to the
δS = 0.005−0.01 cases depending on the data collection time [34, 44]. Two low uncertainty extremes were chosen
beyond these reported values to identify measurement precision thresholds and model trends in the predictability of
force parameters.

2.2 Bayesian Uncertainty Quantification for Force Field Reconstruction

According to the Henderson inverse theorem, it is theoretically possible to uniquely recover the underlying potential in
a pairwise additive, homogeneous fluid [15]. In the context of Bayesian optimization, Henderson’s theorem requires
that there should be a global maximum in the posterior probability distribution at the unique force parameters. However,
as the uncertainty in the structure factor signal increases, deviations from this unique potential are expected, causing the
probability distributions to broaden. This broadening indicates a decrease in confidence in the estimation of the model
parameters. In other words, as structural uncertainty increases, our ability to accurately predict the potential energy
decreases, leading to a wider range of possible parameter values to explain the data.

Bayesian inference was implemented to calculate parameter probability distributions as a function of structure factor
uncertainty. For simplicity of notation, let θ = {λ ,σ ,ε,σn} represent the model parameters and Y = Sd(Q) be the
structure factor observations. The nuisance parameter, σn, represents the width of the Gaussian likelihood and captures
uncertainty from the experimental data and Gaussian process model, which is not known a priori. Calculating the
posterior probability distribution with Bayesian inference then requires two components: (1) prescription of prior
distributions on the model parameters, p(θ), and (2) evaluation of the structure factor likelihood, p(Y |θ). The prior
distribution over the (λ −6) Mie parameters is assumed to be a multivariate log-normal distribution,

θ − γθ ∼ logN (µθ + γθ ,σ
2
θ ) (2)

where µθ and σ2
θ

are the prior mean and variance of each parameter in θ and γθ ∈R is a real-valued parameter shift that
enforces a lower bound. A wide, shifted multivariate log-normal distribution was selected because it is non-informative
and imposes non-negativity constraints on the model parameters. Specifically, λ −6 (defined by the Mie type fluid), σ ,
ε , and σn must be positive. For reference, the prior parameters used in this study and sample range is summarized in
Table 1.

Table 1: Prior parameters on the (λ -6) Mie model parameters.

Parameter µ σ(std.) γθ

λ 3 1 6
σ 2 1 0
ε 0.7 1 0

σn 0.1 3 0

The likelihood function is a Poisson distribution of the neutron counts, but we can approximate this distribution as a
Gaussian because a Poisson distribution approaches a Gaussian distribution in the high count limit,

p(Y |θ) =
(

1√
2πσn

)η

exp
[
− 1

2σ2
n

∑
j
[Sθ i(Q j)−Sd(Q j)]

2
]

(3)

where Sθ (Qi) is the molecular simulation predicted structure factor, η is the number of observed points in the structure
factor, and j indexes over these points along the momentum vector. Bayes’ theorem is then expressed as,

p(θ |Y ) ∝ p(Y |θ)p(θ) (4)

where equivalence holds up to proportionality. This construction is acceptable since the resulting posterior distribution
can be normalized post hoc to find a valid probability distribution. For further details see the following excellent reviews
of Bayesian inference [45, 46].

The Bayesian likelihood distribution is estimated using Markov Chain Monte Carlo (MCMC) samples over the model
parameters θ = {λ ,σ ,ε,σn}. Computationally, a sample of the model parameters is drawn from a Metropolis-Hastings
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type algorithm, passed to the surrogate model, evaluated, and compared to the in silico structure factor. MCMC samples
were calculated using the emcee package [47] from 160 walkers with dynamic burn-in and sample time based on the
autocorrelation convergence criterion used in the emcee package and default stretch move with dynamic tuning.

After the posterior distributions were computed for all experimental conditions and uncertainty levels, the marginal
posterior histograms were averaged over all experimental conditions. Histogram averaging was performed by defining a
fixed range and bin count for all posterior marginals and weighting the distribution counts by the ratio of the number of
counts for a given experiment with the total number of counts over all experiments. In other words, if pa,b(θ) is the
marginal posterior probability distribution for experiment condition a, uncertainty b, on model parameter θ , then the
average marginal posterior Pb(θ) for uncertainty level b is given by,

Pb(θ)≈ ∑
a

na,b

∑a na,b
pa,b(θ) (5)

where na,b is the number of independent MCMC samples for experiment a and uncertainty b. Conceptually, these
average marginal posteriors are an approximation to the marginal parameter posterior distributions over the joint
probability density containing the model parameters, structure factor, and thermodynamic state, p(λ ,σ ,ε,S(Q),T ∗,ρ∗),
where T ∗ = kbT/ε and ρ∗ = ρσ3 are the reduced temperature and density, respectively. More rigorous approximations
derived from methods such as Gibbs sampling were not implemented due to the extremely high computational cost per
experiment.

2.3 Local Gaussian Process Surrogate Models for Structure Factors

The process of populating the posterior distribution function necessitates the evaluation of likelihood for each condition
of interest within the model parameter space, which, in turn, requires conducting an infeasible number of molecular
dynamics simulations. The computational burden associated with this procedure renders the Bayesian framework
impractical even for a relatively small number of samples. To illustrate this, consider the task of obtaining a collision
diameter posterior distribution with a grid resolution of approximately 2% across a wide prior range of mσ (ranging
from 0.5 to 1.5). Achieving such resolution for just the mσ parameter alone would demand a minimum of 50 samples.
If the same level of resolution is desired for the remaining two parameters, a staggering 125,000 molecular simulations
are required to comprehensively quantify the posterior distribution space. Clearly, there is a substantial computational
challenge involved in obtaining accurate and comprehensive posterior distributions within the Bayesian framework.

To expedite the evaluation of the Bayesian likelihood, a local Gaussian process (LGP) surrogate model was trained
to generate structure factors based on a training set of 960 randomly sampled (λ -6) Mie parameters in a prior range
specified in Table 2 [31]. This range of parameters was selected to correspond with the liquid phase region of the Mie
phase diagram and avoid pathological simulations that can occur near phase transitions. Note that this range will change
based on the arbitrary choice of temperature and density for the Mie fluid simulation; but, since the reduced phase
diagram is simply scaled from these values, the molecular dynamics simulation will have the same dynamics, average
thermodynamic properties and structure.

Table 2: Estimated boundaries for physics-constrained prior space based on the (λ - 6) Mie fluid phase diagram. m = 6
is the attractive tail exponent of the (λ - 6) Mie potential. ∗) The maximum λ was selected to be substantially larger
than previously reported values [25, 26, 48].

Param. Min. Min. Criteria Max. Max. Criteria
λ 6.1 m = 6 =⇒ λ > 6 18 Literature∗
σ 1.5 Vapor-Liquid Equil. 2 Solid-Liquid Equil.
ε 0.2 ε < 0 undefined 1.1 Vapor-Solid Equil.

LGP surrogate models reduce the computational time complexity of standard GP regression with little loss in predictive
accuracy [49–51]. Hyperparameter selection was performed using Bayesian optimization with Markov chain Monte
Carlo and surrogate model accuracy was determined to have a root-mean-square error (RMSE) of 0.0036 for a 160
randomly sampled test set within the surrogate parameter range. Surrogate model validation and hyperparameter
training is discussed further in the Appendix.

6



Bayesian Analysis Reveals the Key to Extracting Pair Potentials from Neutron Scattering Data

3 Results and Discussion

We first explore parameter sensitivity using the analytical derivative of the LGP surrogate model. The surrogate model
derivative can quantify how changes in each of the Mie parameters affect the structure factor, providing detailed insights
into structural behavior under various model conditions. Thanks to the computational efficiency of the LGP surrogate,
it is now possible to construct sensitivity heat maps across the (λ -6) Mie fluid phase diagram.

Our second result involves performing Bayesian analysis on structure factors derived from a grid of 16 reference Mie
parameters, each subjected to 6 different noise levels. The objective was to determine the critical threshold of scattering
precision necessary to extract force field parameters from structure factors. Once the threshold accuracy was identified,
posterior distributions at this critical noise level were analyzed to estimate the expected credibility intervals on force
parameter recovery in simple liquids.

3.1 Sensitivity Analysis with Local Gaussian Process Derivatives

The LGP surrogate model can quantify the impact of varying (λ -6) Mie parameters on the structure at specific Q values
via estimation of its derivative with respect to the model parameter, ∂S(Q)

∂θ
, excluding the nuisance parameter σn. Zeros

and extrema of the LGP derivative reveal regions of the structure factor that are least and most affected by changes in
the force parameters, respectively.

Figure 2: Derivatives of the surrogate model-predicted structure factor, S(Q), with respect to each parameter of the
(λ −6) Mie force field (red line) plotted with the given structure factor (blue line).

Figure 2 illustrates the derivatives of the surrogate model-predicted structure factor with respect to each parameter of
the (λ −6) Mie force field. Even small changes in the Mie parameters result in substantial modification of the structure
factor patterns. Consequently, provided experimental scattering results meet a necessary accuracy threshold, all three
of the Mie model parameters (short-range repulsion, size, and dispersive attraction) could be identified. Changes to
the structure factor; however, do not impact all force parameters equally. The repulsive exponent derivative exhibits
a small magnitude and undergoes sign changes near the full-width half maximum of the structure factor peaks. This
behavior suggests that increasing the repulsive exponent, which determines the "hardness" of the particles, causes
a slight increase in height and narrowing of the structure factor peaks without significantly affecting their location.
In the case of the collision diameter, zeros of the derivative occur at structure factor peaks and troughs, while local
extrema align with the half-maximum positions. Consequently, increasing the effective particle size shifts the structure
factor towards lower Q values while maintaining relatively constant peak heights. Regarding the dispersion energy,
its derivative displays zeros at the half-maximum positions of the structure factor and local extrema near the peaks
and troughs. This behavior indicates that an increase in the dispersion energy leads to an increased magnitude and
sharpening of the structure factor peaks similar to the repulsive exponent.
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Figure 3: (a) Heat map of the maximum absolute value of the structure factor derivative with respect to each parameter
of the (λ −6) Mie force field for the validated range of the surrogate model and (b) near the vapor-liquid coexistence
line (red line). The grey region represents a metastable fluid that separates into vapor and liquid phases.

Computation of the LGP derivative can also be performed over the entire validated range of the surrogate model (see
Appendix). To visualize the results, we present a heat map of the maximum of the absolute value of the derivative with
respect to reduced temperature T ∗ = T/ε and reduced density ρ∗ = ρσ3 in Figure 3. Higher values (yellow regions)
indicate a high sensitivity of the structure factor relative to lower values (blue regions). First note that the maximum
derivative estimates vary in magnitude significantly, with a two orders-of-magnitude smaller value for the repulsive
exponent (0.04) compared to the collision diameter (5.0) and dispersion energy (1.35). The repulsive exponent λ

exhibits biomodality as a function of ρ∗, with higher sensitivity regions tending towards higher densities. The structural
sensitivity at high density could be explained by the fact that such systems tend to collide more frequently at close
range which is where the repulsive exponent strongly influences the potential energy function. The collision diameter σ

has a clear trend with more sensitive regions being higher density and lower temperature. Observing the sensitivity
over the full range (Figure 3a), we can see that there also appears to be asymptotic behavior near specific densities,
suggesting that higher sensitivities correspond to closer proximity of the atoms where excluded volume effects can
dominate the structure. Finally, the dispersive forces appear to become more significant to the structure near and above
the critical temperature and at high density and temperatures. Of course, to fully elucidate trends and patterns in
structural sensitivity to the interaction potential would require an LGP surrogate model trained over a wider space on
the Mie fluid phase diagram.

3.2 Force Field Parameter Posterior Distributions as a Function of Uncertainty

Armed with a precise and fast surrogate model for the Mie fluid structure factor, we can now proceed to evaluate the
likelihood function and, consequently, derive Bayesian posterior distributions. Figure 4 illustrates experiment averaged
marginal probability distributions of (λ ,σ ,ε) as a function of noise.
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Figure 4: Average marginal distributions computed from the 16 reference posterior distributions. (a) Histograms of the
average marginal distributions on the (λ −6) Mie force field parameters as a function of uncertainty in the structure
factor (δS). (b) MAP estimates (points) are plotted with 2 std. dev. error bars as a function of noise. Low parameter
uncertainty cases (blue) are compared to high uncertainty cases (red) and the lower limit precision of current neutron
instruments (black dashed line). Low and high uncertainty distributions were separated based on the near doubling of
the standard deviation between δS = 0.005 and δS = 0.01.

The 1D Marginal distributions in Figure 4 are obtained by integrating the joint posterior probability distribution over all
but one model parameter. The mode of the marginal distribution corresponds to the marginal maximum a posteriori
(MAP). It is worth noting that as the uncertainty in the structure factor increases, the marginal distributions become
wider and flatter. This behavior is expected, as greater uncertainty in the observation leads to increased uncertainty in
the parameter distribution. In cases where the structure factors exhibit low uncertainty, the MAP estimates accurately
recover the unknown force field parameters. Deviation between the MAP estimate and true parameter value is calculated
as a function of uncertainty and presented in Table 3.

Table 3: Error in (λ −6) Mie force field parameters determined by Bayesian inference on the structure factor. ∆p is the
difference between the MAP estimate and the underlying parameter set.

Comparable Neutron Instrument δS ∆λ ±2σλ ∆σ ±2σσ ∆ε ±2σε

- 0.0025 -0.051 ± 0.9 0.000 ± 0.01 0.00 ± 0.07
- 0.00375 -0.255 ± 1.0 -0.002 ± 0.01 0.00 ± 0.09

NOMAD (2012) [34] 0.005 0.051 ± 1.3 -0.002 ± 0.01 0.02 ± 0.10
NIMROD (2010) [44] 0.01 -0.561 ± 2.1 -0.006 ± 0.02 0.03 ± 0.19

D4B (1993) [43] 0.025 -0.561 ± 4.8 -0.004 ± 0.03 0.03 ± 0.29
Omega West (1973) [42] 0.05 -1.173 ± 6.7 -0.002 ± 0.04 -0.05 ± 0.36

First, note the drastic difference in the accuracy of the MAP estimates for the repulsive exponent and dispersion energy
parameters as we transition from an uncertainty level of δS = 0.025 to δS = 0.05. The σ parameter is accurately
estimated in both scenarios, demonstrating its reliable prediction even for low quality scattering data. In the δS = 0.025
case, the λ and ε parameters are also accurately predicted. However, for the δS = 0.05 case, the λ and ε parameters
become unlearnable with MAP deviations of -1.173 and -0.05, respectively.

The data also shows a significant change in the width of the distributions at critical uncertainty levels. The standard
deviation effectively doubles for the Mie parameters between δS = 0.005 and δS = 0.01. This rapid increase in width of
the posterior distribution is significant since it becomes exceedingly more difficult to estimate the potential parameters
using optimization techniques. Based on these shifts in the standard deviations, we recommend that neutron scattering
experiments for liquids not exceed random errors of δS = 0.005 to ∼ 30 Å−1 if attempting to extract pair potential
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information from the structure factor. This level of precision is achievable on modern instruments but may require
longer run times than standard neutron scattering measurements.

Taken together, these observations are critical to contextualizing prior studies in which it has been concluded that the
structure factor is insensitive to the interatomic interactions beyond the excluded volume [2, 33] or that uncertainty
in the structure measurement impeded prediction of transferable potentials [7, 8, 16]. In these studies, the instrument
uncertainty ranged from values of 0.03-0.07, exceeding the precision threshold identified by our model. Barocchi’s
(1993) study on liquid krypton was unique in the conclusion that the neutron instrument accuracy was now high enough
to elucidate detailed many-body interactions [43], which was based on structure factors measured to a precision ≤ 0.025,
which is consistent with our conclusions.

3.3 Uncertainty Quantification on a State-of-the-Art Neutron Instrument Model

We have demonstrated through uncertainty quantification that prior attempts of the statistical mechanical inverse
problem were likely limited based on the accuracy of experimental scattering measurements. Specifically, noise in
structure factor data can significantly impact the broadness of parameter probability distributions, rendering optimization
methods unable to accurately estimate the parameter MAP. Furthermore, modern diffractometers are sufficiently precise
to provide reliable inverse problem solutions to assess a variety of atomic force properties. Consequently, we further
analyze the posterior distributions for structure factor results that are consistent with modern diffractometers. The
highest flux instruments are spallation sources, which can measure structure factors with constant standard deviations
of δS = 0.005 out to 30 Å−1. This condition well-represents an upper bound of uncertainty in a structure factor
measurement on the state-of-the-art NOMAD and NIMROD instruments. Posterior marginals, MCMC samples, and
heat maps of the joint posterior distribution are illustrated in Figure 5.

The marginal MAP, corresponding to the global maximum of the marginal distribution, accurately predicts the true
parameter values (indicated by red dashed lines) with exceptional precision, exhibiting error rates below 1% for all
force parameters. The shape and width of the marginal distributions offer valuable insights into the influence of each
parameter on the ensemble fluid structure. The collision diameter marginal exhibits a narrow and symmetric shape,
characterized by a probability density at the MAP that surpasses the repulsive exponent and dispersion energy by
factors of 80 and 3, respectively. This symmetry and high probability density suggest a remarkable sensitivity of the
structure factor to changes in the effective particle size which is consistent with the observations of Weeks, Chandler
and Anderson [14]. However, the seemingly small difference between the repulsive structure factor alone and the true
structure factor clearly contains sufficient information to determine the potential well-depth as well as the repulsive
exponent and collision diameter. Therefore, we contend that the structure factor of liquids contains more information
than previously believed.

Two standard deviations of the posterior distribution can be used as an estimate of our confidence in recovering the force
parameter from the structure factor with ∼95% confidence. Using this metric, we find that the force parameters can be
recovered with 95% confidence within ±1.3 for the repulsive exponent, ±0.02 σ , and ±0.1 ε . Of course, the posterior
distributions computed here are in reduced Lennard-Jones (LJ) units and must be scaled by a known reference to
approximate the credibility intervals in real units. For example, taking the LJ parameters for argon (σ = 3.4 Å, ε = 0.24
kcal/mol [25]) would give a real unit estimate of λ±1.3, σ±0.068 Å, and ε±0.024 kcal/mol with 95% confidence.

Uncertainty quantification and propagation of the potential in relation to the structure factor holds the key to unlocking
several capabilities of neutron scattering, including force field design, elucidation of many-body interactions, and
improved understanding of structural properties in fluid systems [52]. While these aims have motivated research on the
inverse problem for over a century, we are only now seeing evidence that accurate structure inversion on experimental
data is a possibility. We argue, despite having presented a study on a simple model, that our results warrant the
recommendation of revisiting inverse methods for real fluids.

One exciting prospect for inverse problem methods is that interaction potentials derived from structure can serve as
an external validation to computationally expensive bottom-up atomistic models. One example is electron structure
calculations, in which a highly accurate quantum mechanical treatment of the electron structure can reveal insights into
potential energy surfaces and reaction mechanisms. Electron structure methods have become faster and more robust due
to quantum computing [53], clever basis set selection [54], and machine learning [55, 56]. As these more fundamental
theories of atomic structure and motion become commonplace, experimental neutron scattering data will be a crucial
validate of their predictions. Indeed, we have already shown that many-body interactions in noble gases are consistent
with electron structure calculations in trimeric systems [25, 57]. However, further advancement of inverse methods can
provide quantifiable validation of many-body interactions in progressively complex systems.

In contrast to experimental analysis, inverse methods for coarse-graining have thrived in contemporary chemical physics
[58–62]. In coarse-graining, structure factors (or more commonly the partial radial distribution functions) are generated
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Figure 5: Marginal distributions on the (λ − 6) Mie force field parameters for δS = 0.005 at 30 Å−1 with variance
sampled with MCMC plotted with known parameter values (red dashed line).
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from a known model where structural uncertainty fluctuations are significantly smaller than that of experimental data.
In pairwise additive systems with low structural uncertainty, our Bayesian analysis indicates the likely presence of
global maxima in narrow posterior distributions, suggesting that optimization schemes should be capable of reliably
identifying these maxima. Since global maxima are also expected in experimental scattering measurements conducted
using state-of-the-art neutron instruments, there is an opportunity to employ these maximum-likelihood methods for
developing novel force fields directly from experimental data. With this evidence, we hope to bridge the gap between
experiment and simulation-based inverse techniques and foster closer collaboration between these two communities.

It is important to acknowledge certain limitations in the previous analysis when considering the extension of the results
to other physical systems. First, the sensitivity of more complex systems than the (λ -6) Mie model may differ from
the estimates reported in our study. Therefore, it is cautioned to interpret the results of this example as a conceptual
exploration of how classical two-body interactions impact the atomic organization in fluids. Hence, the specific response
of complex systems to variations in interatomic forces should be studied individually. Second, if a fluid cannot be
adequately described by a (λ -6) Mie model, the resulting posterior distribution may exhibit flatness or multimodality,
indicating a high level of uncertainty in both the structure and model parameters. In such cases, a more accurate model
of the system should be adopted to facilitate reliable parameter inference. Furthermore, systematic errors were not
investigated and are certainly significant to the potential reconstruction. Therefore, further work should explore how
to eliminate systematic errors in neutron scattering analysis through physics-based Gaussian process regression or
analogous approaches.

4 Conclusions

Rigorous uncertainty quantification and propagation analysis has shown that modern neutron diffractometers have
attained the necessary accuracy for reliable force field reconstruction. It has also been shown that neutron scattering
measurements within ≤ 0.005 at ∼30 Å

−1
are sufficient for force parameter recovery in simple liquids. We stress that

the structure factor contains information on the force field parameters that control the attractive as well as the repulsive
part of the interatomic potential. This study highlights the exciting possibility of using neutron scattering to predict
the potential energy function of Mie-type fluids, emphasizes the critical role of experimental precision in extracting
potentials from scattering data, and offer svaluable insights into the nature of interatomic forces in liquids.

The significance of these results extends beyond the field of neutron scattering analysis. They hold great potential in
advancing force field design and optimization, enabling the development of effective coarse-graining techniques, and
facilitating the exploration of many-body effects in fluid ensembles. The far-reaching impact of machine learning-
accelerated methods in predicting interatomic forces from experimental structure measurements is evident. In summary,
this research establishes the transformative potential of machine learning in extracting interatomic forces from experi-
mental structure measurements with uncertainty quantification.

Data Availability

The datasets generated during and/or analysed during the current study are available from the correspond-
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6 Appendix

A Local Gaussian Process Hyperparameter Selection and Testing

Local Gaussian process (LGP) surrogate model training for Mie fluid structure factors was performed using our recent
method [31]. The leave-one-out marginal likelihood approach from Sundararajan and coworkers [63] was used to
estimate LGP hyperparameter distributions with Markov chain Monte Carlo (MCMC) sampling (see Figure 6). MCMC
samples were calculated using the emcee package [47] from 160 walkers with dynamic burn-in and sample time based
on the autocorrelation convergence criterion (default stretch move with dynamic tuning). The maximum a posteriori
hyperparameter estimates (dashed red line) were selected as the surrogate model parameters.
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Figure 6: Leave-one-out marginal likelihood distributions estimated with MCMC sampling.

The LGP surrogate model was validated by generating a test set of 160 random samples within the convex hull of the
training set defined according to Table 4. A reduced LGP test space was selected to avoid poor performance near the
training boundaries. Boundaries for the LGP test set were determined by shifting the training set boundary by 12.5% of
the parameter training range. The root-mean-square-error (RMSE) was computed for each test condition (plots (a)-(c)
in Figure 7) and averaged over all structure factor Q points (plot (d) in Figure 7). The average RMSE over Q was
determined to be 0.0036. Surrogate model derivatives were computed only over this validated range.

Table 4: LGP test set boundaries used for surrogate model validation.

Param. Min. Max.
λ 7.59 16.519
σ 1.56 1.94
ε 0.14 0.96
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Figure 7: Root-mean-square error between LGP surrogate model prediction and training set points.
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