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ABSTRACT

This dissertation is founded on the central notion that structural correlations in dense fluids — such as
dense gases, liquids, and glasses — are directly related to fundamental interatomic forces. Identified
early in the development of statistical theories of fluids through the mathematical formulations of
Gibbs in the 1910s, it took nearly 80 years before practical implementations of structure-based
theories became widely used for interpreting and understanding the atomic structures of fluids from
experimental X-ray and neutron scattering data. Breakthroughs in structure-potential methods can be
largely attributed to advancements in molecular mechanics simulations and improving computational
resources. Consequently, pioneers in the field, such as Putzai and McGreevy, Schommers, and Soper,
were able to develop successful hybrid statistical mechanics and molecular simulation techniques,
enabling the analysis of experimental scattering data with physics-guided models.

Despite advancements in understanding the relationship between structure and interatomic forces, a
significant gap remains. Current techniques for interpreting experimental scattering measurements are
widely used, yet there is little evidence that they yield physically accurate predictions for interatomic
forces. In fact, it is generally assumed that these methods produce interatomic forces that poorly model
the atomistic and thermodynamic behavior of fluids, rendering them unreliable and non-transferable.
This thesis aims to address these limitations by refining the statistical theory, computational methods,
and philosophical approach to structure-based analyses, thereby developing more robust and accurate
techniques for characterizing structure-potential relationships.

In summary, the central theme of this dissertation is the idea that rigorously quantifying uncertainty in
thermophysical properties can enhance predictive accuracy and deepen our conceptual understanding
of the liquid state. This work explores several key concepts:

1. Probabilistic Iterative Potential Refinement: Utilizing Gaussian process regression allows us to
reconstruct interatomic forces from structural correlations while maintaining thermodynamic
consistency (Chapter 2).

2. Bayesian Uncertainty Quantification and Propagation: An accelerated Bayesian method is pro-
posed and implemented to quantify uncertainty in pair potential reconstructions from scattering
measurements (Chapter 3).

3. Error Propagation in Neutron Scattering Measurements: The application of Bayesian methods
demonstrates that even random errors in neutron scattering measurements can impede our
ability to accurately infer interatomic forces. Furthermore, that modern neutron instruments can
successfully extract forces due to their sufficiently low random noise (Chapter 4).

Overall, this dissertation asserts that structural analysis is more nuanced and practically useful than
previously believed.
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Figure 1: The statistical mechanical version of a ball and stick model.

1 Introduction

1.1 The Origins of Liquid Structure Analysis

The liquid state, being the intermediate phase between the well-ordered solid and the chaotic gas, has been described as
a "statistical mechanical jungle" reserved for only the most foolhardy of academics [1]. For me, liquid state theory
seems at times to be a study in cryptology, riddled with strange symbols that you might find on the walls of a Masonic
temple let alone a graduate textbook in statistical physics. One only needs to turn to page 3 of Croxton’s Liquid State
Physics and take a glance at graphical representations of cluster integral expansions (Figure 1) to see what I mean!
Nevertheless, the reward for fighting through these strange notations and difficult concepts is a beautiful and concise
liquid state theory. This theory is the foundation for modern molecular simulations, has motivated the design and
advancement of multi-billion dollar particle scattering facilities, and forms the cornerstone of modern thermodynamics.

The most exciting aspect for me (and likely for others in this field) is that there is still so much about liquids that
remains unknown. Indeed, liquid state theory is not yet advanced enough to allow one to take a molecular description
of a liquid and fully describe its structural, thermophysical, and flow properties. This challenge was recognized by
theorists in the early 1960s, and owing to advancements in computing machines and numerical methods, led to the
development of computer simulations of the liquid state. Computer simulations of liquids have since become one of the
most widely used and successful methods for understanding chemical processes fundamental to energy storage and
transfer, biological function and health, and even the behavior of interstellar bodies. Clearly, if a general liquid state
theory were discovered, many of us molecular dynamicists might soon find ourselves out of a job!

Despite lacking a unified theory of the liquid state, what we know is that there are fundamental relationships between
the arrangement and organization of molecules and emergent thermodynamic properties. The arrangement of molecules,
which can be charted by a spherical coordinate system with vectors corresponding to the radial, polar, and azimuthal
positions of atoms in the system, will be referred to as the structure of a liquid. Of course, our limited senses
and technology make it practically impossible to know the structure at any instant, or snapshot, in time. However,
measurement techniques such as X-ray and neutron scattering can be used to estimate the structure that the liquid
takes on average. It is these averages of the atomic coordinates that can be used within existing liquid state theories to
establish a connection to interatomic forces and thermodynamic behavior.

Correctly linking liquid structure with theoretical statistical mechanics holds great promise in engineering novel liquid
state materials and advancing our fundamental understanding of the liquid state. Such a method could obviate the
need for designing and training expensive computer simulations, inform engineers on subtle, atomic scale structure-
property relationships, and possibly be used in tandem to ab initio electronic structure calculations to understand how
quantum mechanical effects impact condensed phase properties. Finally, studying the connection between structure,
atomic scale forces, and thermodynamics is of great theoretical interest. It pushes the boundaries of what can be
learned from existing theories and has the potential to identify key problems with predominant schools of thought
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on the connection between atomic and thermodynamic behavior. Ultimately, such an approach could form a unified
theory of liquids that comprehensively describes molecular, thermophysical, and continuum-scale behavior from a
molecular perspective. Towards this ultimate goal, this dissertation aims to propose a novel interpretation of
structure-potential modeling through the application of Bayesian probability theory.
To this aim, the remainder of this introduction will be organized as follows:

1. Measuring Liquid Structure with Experimental Neutron Scattering - Overview of liquid structure measurement
techniques using neutron scattering experiments. It discusses fundamental mathematical relationships between
observed quantities (e.g., the structure factor) and derived quantities (e.g., radial distribution functions),
essential for interpreting liquid structure. Furthermore, it addresses key experimental and modeling challenges
involved in extracting interatomic forces from structural data.

2. A Comprehensive Review of Structure-Potential Analysis - Literature review of state-of-the-art applica-
tions of liquid state theory in the analysis of neutron scattering data. It outlines key methods such as the
Ornstein-Zernike integral relation, the Henderson inverse theorem, and empirical potential structure refinement.
Additionally, a detailed yet concise proof of the Henderson inverse theorem is included, as it serves as the
primary evidence for the hypothesis that a unique pair potential can be derived from scattering measurements
for real liquids. This theorem also underpins the variational method of structure optimized potential refinement
described in Chapter 2.

3. Modern Scattering Analysis: A New Perspective - Introduces the central thesis of the dissertation, emphasizing
the potential of a novel perspective centered on uncertainty quantification. It defines and justifies the adoption
of uncertainty quantification using Bayesian analysis and outlines its application within the text. Specifically,
it discusses the implementation of Bayesian techniques for both continuous functions (Gaussian processes -
Chapters 2-4) and discrete variables (Bayesian parameter optimization - Chapters 3 and 4).

1.2 Measuring Liquid Structure with Experimental Neutron Scattering

In statistical mechanics, the structure of a liquid is characterized using the radial distribution function, g(r). This
function is computed by counting the number of particles surrounding a reference particle and constructing a radial
shell of thickness dr around this particle. The average value of the radial distribution function at r+ dr is the particle
number density within the shell divided by the bulk particle density of the material. This process is repeated for each
particle in the system and over time, and the results are subsequently averaged. Thus, g(r) represents a radial, time,
and particle average density distribution. A visualization of a single snapshot of this computation is shown in Figure 2
(radial distribution function was taken from Yarnell (1974) [2]).

Neutron scattering is the gold-standard technique to measure radial distribution functions from sub-angstrom to micron
length scales for systems with light-atoms (such as hydrogen) [3]. When a neutron beam is directed through soft matter,
incident neutrons collide with atomic nuclei and scatter in various directions (Figure 3). A detector mounted behind the
sample container is designed to quantify single neutron interaction events as a function of momentum transfer, yielding
an experimental observable known as the differential scattering cross section, d!

dΩ . The scattering cross section is the
ratio of scattered neutrons per second into solid angle dΩ divided by the number of neutrons incident to dΩ (which
is just dΩ times the incident flux and has units of barns/steradian) and contains contributions from a wide array of
neutron-atom interactions, including elastic, inelastic, incoherent, and multiple scattering [4].

The time-averaged, elastic contribution to the scattering cross section, named the static structure factor, is the linear
density response of the material to the neutron wave propagation momentum, ⊋q. By the fluctuation-dissipation
theorem, the linear density response of a perturbed system can be expressed in terms of equilibrium fluctuations in
the unperturbed system. Therefore, the static structure factor measures the time-averaged, equilibrium particle density
distribution in momentum space [5]. The static structure factor in a monatomic system with no long-range order is
related to the more familiar radial distribution function, g(r), through the radial Fourier transform,

S(q) = 1+
4∀
q#

→b↑2
∫ !

0
r[g(r)↓1] sin(qr)dr (1)

where q is the momentum transfer, b is the scattering length density, and # is the atomic number density [6].

In mixtures or molecular liquids, the static structure factor, referred to in this case as the total structure factor F(q), can
be expressed as a combination of of site-site partial structure factors, si j, between atoms i, j such that,
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Figure 2: The radial distribution function keeps track of the particle density of a system as a function of radius away
from a reference atom. The dashed radial shell in the particle picture (left) is represented as a radial interval in the radial
distribution function (right).

Figure 3: Incident scattering vector ki scattered through solid angle dΩ.
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F(q) = ∀
i↔ j

[2↓∃i j]wi jsi j(q) (2)

where wi j is a weighting factor depending on the scattering length density and atomic concentration of the i, j pair and
∃i j is the Kronecker delta. Partial structure factors can be Fourier transformed with Eq. (1) to obtain real space site-site
pair distribution functions. These site-site radial distribution functions show how the atomic density of type 1 within a
spherical shell around any atom of type 2 in the system changes with respect to the radius of the shell. For example, in
liquid water, an O-H partial distribution function describes atomic fluctuations of oxygen atoms around any arbitrary
hydrogen atom. Eq. (2), referred to as the Faber-Ziman approximation, is ill-posed (since it has no unique solution) and
can only be approximated via iterative molecular simulation approaches.

While eqs (1) and (2) hold true in theory, practical implementation of these models face several challenges. First, the
finite size of individual neutron detectors constrains structure factor measurements to discrete momentum transfer,
∆q = qi↓qi↓1, values which can result in aliasing if the sampling efficiency is < 1 (i.e. the Peterson-Middleton theorem
[7]). Second, finite detector coverage windows the measurement to a range between some qmin and qmax, preventing the
evaluation of the full integral specified in Eq. (1). Finally, measurement uncertainty of neutron counts and momentum
transfer positions (i.e. time-of-flight uncertainty) introduce noise that can corrupt the underlying signal [8]. These
limitations mean that we can only compute a discrete radial Fourier transform over uncertain observations,

g(r) ↗ 1+
1

2∀2#

qmax

∀
qi=qmin+q1

S (qi↓1)↓S (qi)
2

(qi ↓qi↓1) (3)

where we have introduced the notation S (q) = S(q) sin(qr)
qr q2 for brevity. The key problem here is that this discrete

Fourier transform can introduce systematic deviations in the predicted g(r) from the ground truth one.

The most well studied issue in prior literature is addressing the qmax cutoff using so-called modification functions. The
essential idea here is to smoothly transition the structure factor from a data dominated section (as measured by the
neutron detector) to a model driven section (dictated by prior physical knowledge of the structure factor). Modification
functions are designed to force the contribution of the experimental data to 0 near qmax, effectively nullifying any
features in the data and strictly relying on the physical model alone. Usually the data is transitioned into is the Poisson
point process ideal gas model (i.e. SIdeal(q) = 1)[9]. Mathematically, this adjusts the integral seen in equation 1 into,

g(r) = 1+
1

2∀2#

∫ !

0
(S(q)↓1)M(q)

sin(qr)
qr

q2dq (4)

where M(q) is the modification function as a function of q. Common choices for the modification function are the
first Bessel function [10], second Bessel function [11, 12], cosine cutoff [13], and dynamic functions [14]. However,
as pointed out by J.E. Proctor and co-workers [15], this is an approximate Bayesian predictive model where the
modification function is used to decide where a prior model of the S(q) should be preferred over the data. This can be
seen by rewriting equation 4 so that,

= 1+
1

2∀2#

∫ !

0

(
(S(q)↓1)M(q)︸ ︷︷ ︸
Data Driven Predictive

+(SIdeal(q)↓1)(1↓M(q))︸ ︷︷ ︸
Model Driven Predictive

)
sin(qr)

qr
q2dq. (5)

If you view M(q) as discrete posterior probability mass, then this expression can be thought of as writing the structure
factor as a weighted mixture of the two outcomes, either data or model, at each q value.

1.3 A Comprehensive Review of Structure-Potential Analysis

At this point, it should be clear that the determination of radial distribution functions are obscured by experimental,
model, and measurement uncertainty. However, assuming that the radial distribution functions can be determined
accurately, there are a few fundamental liquid state theories that allow us to predict interatomic forces between atoms in
the system and consequently their thermodynamic behavior. One of the most important and far reaching results is the
Ornstein-Zernike (OZ) integral relation [16].

The OZ relation can be proven by noticing that the excess part of the free energy functional generates a set of direct
correlation functions that can be related to the density correlation function [17]. Conceptually, all that we are doing
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is a statistical mechanical "book keeping" of the direct and indirect atomic correlations. Unfortunately, on its own
the OZ relation is not enough to take an experimental scattering measurement and determine an interatomic potential.
Instead, we introduce some approximation of how the direct correlation function is related to the interatomic potential
using a closure relation. Practically, OZ integral relation methods generally have slow convergence; and further, owing
to their approximate nature, often do not give accurate predictions for interatomic potentials and thermodynamic
properties for real systems [17, 18]. It is notable, however, that the emergence of machine learning in liquid state
theory has shown promise in mitigating these challenges [19]. For example, neural networks have been implemented
to solve both the forward and inverse Ornstein-Zernike integral relations for simple liquids [20, 21]. Further note
that there are other integral relations from liquid state theory, including the Yvon-Born-Green equation and the
Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy, but these have seen little use for scattering analysis.

The Henderson inverse theorem, first published in 1974, is another important and more practical result on the relationship
between the radial distribution function and pairwise additive potential in a statistical ensemble. The Henderson inverse
theorem states that, given a fixed density, homogeneous system with pairwise additive Hamiltonian and the same radial
distribution function, their pair potentials can differ by at most a trivial constant [22]. The importance of this result lies
in the fact that, if one can find a potential that reproduces a target radial distribution function, this must be the unique
(up to an additive constant) potential that models that system. Supposing that this pair potential was sufficient to model
the interatomic forces, it is possible, in principle, to recover thermodynamic consistency with liquid state theories such
as the Ornstein-Zernike relation.

To prove this theorem, we first need to establish the Gibbs and Gibbs-Bogoliubov inequalities for a quantum system.
The Gibbs inequality is an important result about the information entropy of a system while the Gibbs-Bogoliubov
inequality establishes a relationship between the free energy and entropy in the canonical ensemble.
Lemma 1.1. Let #1 and #2 be positive, trace-class, and linear density operators on a Hilbert space, H, such that
Tr(#i) = 1. Then,

Tr(#1 log(#2)) ↘ Tr(#1 log(#1))

Proof. We can express the states #1 and #2 in an arbitrary basis of H (c.f Riesz’s Lemma [23]) such that,

#1 = ∀
%

p% |%↑→%|

#2 = ∀
%

q% |%↑→%|

We then compute the difference between the cross entropy, #1 log(#2), and information entropy of #1, #1 log(#1),

#1 log(#2)↓#1 log(#1) = ∀
% ,&

[p% |%↑→%| log
(
q&

)
|& ↑→& |↓ p% |%↑→%| log

(
p&

)
|& ↑→& |]

and since % and & are orthonormal bases,

= ∀
%
[p% log(q% )↓ p% log(p% )] |%↑→%| .

Taking the trace of this operator we obtain,

Tr(#1 log(#2)↓#1 log(#1)) = ∀
%
[p% log(q% )↓ p% log(p% )] = ∀

%
p% log

q%
p%

.

Note that since logx ↘ x↓1,

∀
%

p% log
q%
p%

↘ ∀
%
[q% ↓ p% ] = 0

and finally, since the trace is a linear operator, this means that,

Tr(#1 log(#2)) ↘ Tr(#1 log(#1))
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.

Lemma 1.2. Let #1 and #2 be positive, trace-class, and linear density operators on a Hilbert space, H, such that
Tr(#i) = 1. Then, in the canonical ensemble where, # = exp(↓&H )/Z, where & is the inverse thermal energy, H is
the Hamiltonian and Z is the canonical partition function, then,

F2 ↘ F1 + →H≃↓H!↑1.

Proof. Suppose we take the state #2 in the canonical ensemble so that,

#2 = exp(↓&H≃)/Z

where & is the inverse thermal energy, H≃ is the Hamiltonian, and Z is the partition function. Then for some #1 we
have,

Tr(#1(↓&H≃↓ logZ)) ↘ Tr(#1 log(#1)) = ↓S1/kB

where S1 = ↓kBTr(#1 log(#1)) is the entropy of system 1 and kB is the Boltzmann constant. Since the trace is a linear
operator, we can separate the argument of the trace on the left hand side and divide both sides by the thermodynamic &
to obtain,

Tr(#1H≃)+ kBT logTr(Z) ↔+T S1.

But Tr(#1H≃) is just the expectation of H≃ over system state 1 and ↓kBT logTr(Z) is the definition of the Helmholtz
free energy in the Canonical ensemble. Thus,

F2 ↘ →H≃↑1 ↓T S1

and for system 1,

F1 ↘ →H!↑1 ↓T S1.

Combining the two expressions gives us the inequality,

F2 ↘ F1 + →H≃↓H!↑1.

The content of Henderson’s inverse theorem can now be stated as follows:
Theorem 1.1. Two systems with Hamiltonian’s of the form,

H = ∀
i

p2
i

2m
+

1
2 ∀

i ⇐= j
u(|ri ↓ rj|)

with the same radial distribution function, g(2)(ri,rj),

g(2)(ri,rj) =
1

#2

〈
∀

i
∀

j
∃ (r↓ ri)∃ (r⇒ ↓ rj)

〉

have pair potentials, u(|ri ↓ rj|), that differ by at most a trivial constant.
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Proof. Suppose that two systems with a pairwise additive Hamiltonian have equal radial distribution functions and
u1 ↓u2 ⇐= c where c is some constant. Then,

→H≃↓H!↑1 ⇐= c

and since the Helmholtz free energies are constants,

F2 ↓F1 < →H≃↓H!↑1

where we lose the possibility of equality from the Gibbs-Bogoliubov inequality. Now, we can expand the expectation of
the Hamiltonian in terms of the radial distribution function (since the system is pairwise additive) so that,

F2 ↓F1 <
n
2

∫
[u2 ↓u1]g1(r)d3r

and the same holds for a swap of the indices,

F1 ↓F2 <
n
2

∫
[u1 ↓u2]g2(r)d3r.

Combining these two equations gives,

0 < 0

a contradiction. Therefore, our premise that the radial distribution functions are equal while the pairwise additive
potential energies differ by a trivial constant must be false. The only other possible difference between the potential
energies is constant, so this must be true to satisfy the Gibbs-Bogoliubov inequality.

Analogous results can be proven more generally using the methods of relative entropy [24] and functional analysis (see
Appendix D) [25–27], although it is notable that there is no guarantee that a unique potential exists for a given radial
distribution function. And furthermore, these results take us no further in practice since the radial distribution function
can only be inferred and not known exactly.

The Henderson inverse theorem forms the basis of modern numerical structure inversion methods including Schommers
algorithm [28], iterative Boltzmann inversion (IBI) [29, 30], and empirical potential structure refinement (EPSR)
[31]. Currently, IBI is generally used for training coarse-grained force fields from more computationally expensive
all-atom force fields models, while EPSR is exclusively used to find molecular configurations that are consistent with
experimental neutron scattering patterns [32, 33].

IBI and EPSR are iterative predictor-corrector algorithms that can be summarized as follows: (1) a predictor is applied
to ’predict’ the underlying interatomic potential given an experimental pair correlation function, (2) a corrector performs
a molecular simulation (Monte Carlo molecular mechanics) with the predicted potential to evaluate the quality of
fit between the simulated and experimental pair correlation functions, and (3) the corrector results are fed back to
the predictor to refine or ’correct’ the prior potential. Steps 1-3 are iterated until the simulated and experimental
pair correlation functions converge. While these methods can be used for coarse-graining or to determine molecular
configurations consistent with a given scattering pattern, there is little evidence that interatomic potentials obtained
from these techniques can reliably predict thermodynamic behavior for real liquids. For example, Soper showed that
O-O and H-H site-site interatomic potentials derived from EPSR applied to scattering data of liquid water predict a 4
times more negative excess internal energy compared to the experimental value [31] and later concluded that EPSR
cannot be used to derive a reliable set of site-site pair potentials for a given system [34].

In our search for a method that can fit experimental scattering data, estimate interatomic forces and model liquid state
thermodynamics, clearly EPSR falls short. First, the molecular configurations and potentials generated from these
methods can be wildly non-physical [35] and non-unique [36] (Figure 4). This lack of robustness maybe due to the
specific construction of EPSRs Monte Carlo molecular mechanics step or because its solutions fluctuate on the whim of
user-specified model inputs. Second, the fact that the determination of site-site partial structure factors is an ill-posed
inverse problem performed on uncertain experimental data means that there is no unique molecular configuration
that explains a given scattering measurement. The problem here is quite grave since, even if we did find a molecular
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Figure 4: Site-site radial distributions for amorphous GeSe2 determined from different EPSR runs differ by ⇑16%.
Figure reproduced from Alan Soper, On the uniqueness of structure extracted from diffraction experiments on liquids
and glasses, Journal of Physics : Condensed Matter, Volume 19, Issue 41, Page 12, 01/01/1989. © IOP Publishing.
Reproduced with permission. All rights reserved.

configuration that matches the scattering data, there is no guarantee that this configuration makes any sense at all.
Finally, it is well-known that there are significant quantum mechanical (both nuclear and electronic) and many-body
effects that influence structural behavior in liquids that EPSR does not take into account in its molecular models. It is
becoming increasingly evident that such effects significantly influence solvent behavior and self-assembly [37]. As
methods to model these behaviors evolve and become more computationally accessible, the physical models underlying
liquid structure prediction should evolve accordingly.

To summarize the current state-of-the-art, what we have is a scientific landscape where we can accurately measure
atomic scale correlations between atoms in complex molecular liquids with neutron scattering experiments, along
with multiple and sound theoretical results allowing us to connect this information to fundamental interatomic forces
and thermodynamics. And yet, a clear demonstration of this connection has evaded the scientific literature for over
a century. While interatomic potentials can be derived with existing tools like EPSR, the fact that the results are not
robust, can change from run to run, and do not reproduce thermodynamic behavior suggests that existing techniques are
generally unreliable and not suitable as a bridge between structure, interatomic forces, and thermodynamic properties.
Therefore, what is needed is a careful reexamination of the philosophical, theoretical, and computational approaches to
this complex inverse problem.

One could say that the problem of building thermodynamically consistent structure-potential models for liquids is
similar to "finding a needle in a hay stack". But in fact, the situation is much worse since we wouldn’t be able to tell the
difference between the needle and the hay even if we found it! A more accurate description could be summarized as
"finding a specific needle in a needle stack".
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1.4 Modern Scattering Analysis: A New Perspective

Based on the latest advancements in liquid structure modeling, the prevailing challenges that remain in the field can be
outlined as follows:

1. Experimental scattering data is subject to numerous sources of random errors, arising from uncontrolled
effects and improper data corrections and manipulations (e.g., Fourier transforms). Consequently, interpreting
scattering measurements in real space is non-trivial and can introduce uncertainty into the observed structures
used in liquid state theories.

2. The non-uniqueness of real-space structure interpretation implies that commonly used scattering analysis tools,
such as EPSR, are sensitive to model parameter inputs and do not guarantee the same solution for each run.
Additionally, the lack of uncertainty quantification in existing methods means we cannot gauge the reliability
of the results.

3. Current state-of-the-art methods for the structure-potential inverse problem, such as the Ornstein-Zernike
relation and Henderson inverse theorem based methods, are rigorously derived from statistical mechanics.
These equations necessitate approximate closure relations, molecular simulations, or advanced machine
learning algorithms (e.g., neural networks) to solve. Thus, these methods are often slow to converge and have
primarily been successful only in simple fluid models, thereby limiting their practical utility in studying real
liquids.

Clearly, uncertainty is the main thread that occludes every step towards a consistent structure-property model of liquids.
First, the scattering data is uncertain, making it impossible to confirm if a ’correct’ measurement is being applied
as the structure target. The statistical mechanical model and its parameters are also uncertain. For example, the
Ornstein-Zernike equation may be rigorous for a system of classical particles, yet contains no description of important
quantum mechanical effects of the electrons or nuclei. Moreover, the resulting solution lacks guaranteed uniqueness,
leaving us unable to verify its accuracy without external validation through molecular simulations or thermodynamic
calculations.

In this dissertation, it is my aim to outline an alternative philosophy to liquid state theory that centers on the key idea
of making decisions in the face of uncertainty. Here uncertainty will refer to our current state of knowledge (i.e. the
value of an observable within some credibility interval) given model, parametric, experimental, and computational
uncertainties as defined below:

1. Model uncertainty refers to the fact that there is never a ’perfect’ model of nature that we can use to predict a
quantity-of-interest. In the context of molecular simulations, model uncertainty is associated with choosing
a specific force field, or choosing to use a path integral molecular dynamics method rather than an ab initio
electron structure method.

2. Parametric uncertainty refers to the uncertainty in the parameters we use within a given model. For instance,
the Lennard-Jones force field parameters for argon are ! = 3.4 Åand ∋ = 0.24 kcal/mol. But how sure can we
be that these are exactly correct parameters? What if I choose a slightly smaller or larger !? Does it really
effect the results of the molecular simulation? In reality, there is a distribution of parameters that can model a
given quantity-of-interest, and we can think of this distribution as representing parametric uncertainty.

3. Experimental uncertainty refers to the fact that measurements are subject to numerous sources of error that
make the data deviate from the ground truth. A straightforward example is noise in signals or systematic error
from a thermocouple being poorly calibrated.

4. Computational uncertainty refers to uncertainty in numerical calculations. Although these errors can be quite
small, floating point errors or misallocation of memory in parallel algorithms can cause deviations from true
solutions, particularly in complicated numerical problems that require multiprocessing.

Bayesian methods are the gold-standard in treating these obscure types of uncertainty in a mathematically rigorous
way. The idea is to learn the posterior probability distribution, p(( |D) (read probability of ( given D), of some
quantity-of-interest ( (this could be a parameter, model, function, field, etc), given observed data D according to the
following equation,

p(( |D) =
p(D|( )p(( )

p(D)
(6)

where p(D|( ) is the likelihood that the data is well modeled by ( , p(( ) is our prior, and p(D) is the probability of
D being observed at all [38]. Note that no restriction has been imposed on the form of ( , D, the likelihood or prior
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aside from the fact that any quantity p(·) must be a probability distribution (i.e. it must be non-negative and integrate to
one over all possible events). In fact, ( can be a single quantity, tensor, function, or field and D can be a list of many
observations or a combination of completely different observations without loss of generality. If the quantity-of-interest
is a function, then stochastic processes (e.g. Gaussian processes) are typically invoked using Bayesian nonparametrics
[39] (see Appendix C).

Although Bayes’ Theorem is a straightforward statement of conditional probability, it is conceptually powerful. It
provides a method for updating our beliefs about a hypothesis based on new evidence by combining prior knowledge
with new data to revise the probability of the hypothesis being true. The flexibility in choosing likelihood and prior
probability distributions has led some to criticize Bayesian statistics as being too subjective [40]. However, this
flexibility allows for the incorporation of expert knowledge, ensuring that models remain realistic and physically
plausible. This interpretability gives Bayesian inference a significant advantage over other black-box machine learning
methods, such as neural networks or variational autoencoders, for function approximation and uncertainty quantification
[41].

Bayesian inference finds diverse applications, ranging from training models to predicting outcomes with credibility
estimates, and even forecasting functional and field distributions [42]. In essence, it offers a structured approach to
compute both discrete probability mass densities and continuous probability distribution functions across parameters and
quantities-of-interest. These probabilistic assessments are instrumental in decision theory applications, facilitating risk
and loss quantification, as well as sensitivity analysis of model parameters in predicting outcomes. Moreover, they serve
as invaluable guides in research, pinpointing gaps in existing models and directing further investigations. Remarkably,
Bayesian field theory even reveals fundamental connections with statistical physics and quantum mechanics, offering
insights into the complex phenomena of atomic systems [43].

At first, uncertainty can be a confusing concept, as it is not immediately clear how to express a ’lack of knowledge’ in a
rigorous way. For this, we will need the tools of probability theory [40] and its numerical counterpart, probabilistic
machine learning [42]. Probabilistic machine learning has experienced a renaissance in the last few decades, with
applications becoming commonplace across a broad landscape of contemporary science including astronomy [44],
ecology [45], and genetics [46–49], among others. Liquid structure analysis is no different. In fact, it has been
speculated that novel approaches to neutron scattering would likely be Bayesian in nature [36], and we are just starting
to see probabilistic machine learning methods applied to neutron diffraction [50]. Uncertainties have been reported for
the estimated partial radial distributions for water [51] (see Figure 5), although this is likely an underestimate since the
analysis did not consider experiment, model or parameter uncertainty.

This dissertation hypothesizes that rigorous uncertainty quantification using Bayesian inference can enhance the
capabilities of liquid state theory and address its primary challenges. For instance, applying Bayesian uncertainty
quantification to experimental scattering data can reduce the risk of overfitting to poor data. Additionally, recognizing
that model results come from a distribution of possible solutions allows for the quantification of non-uniqueness and
lack of robustness in a given model. Using Bayesian Gaussian processes to quantify this distribution enables us to learn
model outputs with uncertainty, even for complex functions like the pair potential (Chapter 2) and structural correlation
functions (Chapters 3 and 4). Furthermore, physics-informed Gaussian process design can ensure that the model
predictions abide by physically justified principles such as continuity and differentiability, mitigating non-physical
solutions often observed from EPSR. Bayesian optimization can also estimate model and parameter uncertainty within
a selected model framework (Chapters 3 and 4), helping to determine whether a model choice is adequate for explaining
a given quantity of interest.

1.5 Outline and Scope of the Thesis

The main content of this dissertation includes three chapters in which a novel application of Bayesian inference is
applied to advancing the start-of-the-art in structure-property models. Chapter 2 is a reproduction of my first paper,
"Transferable force fields from experimental scattering data with machine learning assisted structure refinement"
originally published in the Journal of Physical Chemistry Letters in December, 2022. The chapter describes how to
implement nonparametric Bayesian methods, specifically Gaussian process regression, within an iterative Boltzmann
inversion framework to learn interatomic potentials from neutron scattering data in noble liquids. Chapter 3 shifts
gears and focuses on a practical method to train molecular models given experimental scattering data using Bayesian
inference. The idea is to use machine learned "surrogate" models to replace the molecular dynamics step in the model
parameter training, effectively reducing the force field training time by over a million-fold. Chapter 3 is a reproduction
of the paper, "Accelerated Bayesian inference for molecular simulations using local Gaussian process surrogate models",
published in the Journal of Chemical Theory and Computation in March, 2024. Chapter 4 explores the questions (1)
how accurate does scattering data need to be to learn underlying interatomic forces and (2) do random errors from
scattering measurements corrupt the structure measurement to a degree that we can no longer recover interatomic force
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Figure 5: Partial radial distribution functions for HH, OH, OO atom pairs with uncertainty estimates from 6 EPSR
runs (vertical bars). Figure reproduced from Alan Soper, The Radial Distribution Functions of Water as Derived from
Radiation Total Scattering Experiments: Is There Anything We Can Say for Sure?, ISRN Physical Chemistry, Volume
2013, 11/28/2013.

information? A question originally investigated by Verlet in 1968, this chapter demonstrates that the prior conclusion
that it was not possible to quantify interatomic forces from scattering data may need to be overturned. Chapter 5:
Conclusions and Future Work outlines key results and motifs from the thesis and expands on ongoing and future
research on the horizon of Bayesian liquid state theory.

Finally, four appendices are included for reference to specific topics and/or mathematical concepts addressed in the
main chapters: (A) Quantum and Many-Body Effects from Neutron Scattering expands on ongoing work attempting to
decipher what physical phenomenon induce specific features in SOPR potentials. (B) Statistical Mechanics of Liquid
Phase Systems is a collection of personal notes starting with classical Hamiltonian mechanics through to statistical
mechanics of the liquid state. These notes were compiled and prepared as a lecture series for the course, "Molecular
Simulations for Chemical Engineers" taught in Fall, 2023 at the University of Utah and have an accompanying video
lecture series on YouTube here. The course was taught by the support of the Utah Teaching Assistantship program. (C)
Principles of Bayesian Statistics outlines the basics of probability theory and Bayesian methods as implemented in the
main chapters. Although this appendix is not suitable to replace a full text on the subject (I would recommend Gelman’s
Bayesian Analysis [38]), the hope was to briefly outline key terminology and results that were not expanded on in the
main chapters. Finally, Appendix (D) Introduction to Functional Analysis is included as a reference to terminology
and theorems relevant to understanding some of the most recent results in liquid state theory. Particularly relevant are
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a series of papers outlining the applicability, limitations, and practical variational implementations of the Henderson
inverse theorem [25–27] as well as providing a basis to understand Bayesian field theory [43]. Although not directly
used in the main chapters, I felt that it was important to compile and include these notes for future reference as the
methods of functional analysis may offer exciting new ways of conceptualizing important problems in the field.

2 Learning Interaction Potentials from Scattering Data

Structure and interatomic forces are fundamentally linked. Although these relationships can be rigorously established
for model fluids, the situation is less optimistic for real systems due to significant many-body interactions and quantum
mechanical effects. However, fundamental results from statistical mechanics, such as the Ornstein-Zernike integral
relations, inverse Kirkwood-Buff theory, and the Henderson inverse theorem (see Appendix B), hint at the possibility of
determining unique and accurate interaction potentials to model thermodynamic and structural property relationships
simultaneously. These force fields would be better suited to studying complex behaviors of liquids, such as self-assembly
or vapor-liquid equilibrium, and possibly give insight into the nature of physical interactions.

We have developed an algorithm called structure-optimized potential refinement (SOPR) designed to extract interaction
potentials from experimental scattering data. SOPR is a numerical method for the Henderson inverse theorem assisted by
probabilistic machine learning to address challenges such as over-fitting to uncertain data and numerical instability. The
probabilistic machine learning step involves Gaussian process regression with physics-guided priors of the interaction
potential estimated with Henderson inverse theorem. SOPR has been applied to radial distribution functions on noble
gases and found to be transferable to the prediction of vapor-liquid equilibria, demonstrating for the first that potentials
derived directly from a scattering measurements can reproduce thermodynamic properties of real fluids. In this chapter,
the original publication describing the foundational principles and SOPR method is reproduced from the Journal of
Physical Chemistry Letters, 13 (49), 11512-11520 with permission of the publisher.

2.1 Abstract

Deriving transferable pair potentials from experimental neutron and X-ray scattering measurements has been a long-
standing challenge in condensed matter physics. State-of-the-art scattering analysis techniques estimate real-space
microstructure from reciprocal-space total scattering data by refining pair potentials to obtain agreement between
simulated and experimental results. Prior attempts to apply these potentials with molecular simulations have revealed
inaccurate predictions of thermodynamic fluid properties. In this letter, a machine learning assisted structure-inversion
method applied to neutron scattering patterns of the noble gases (Ne, Ar, Kr, and Xe) is shown to recover transferable
pair potentials that accurately reproduce both microstructure and vapor-liquid equilibria from the triple to critical
point. Therefore, it is concluded that a single neutron scattering measurement is sufficient to predict macroscopic
thermodynamic properties over a wide range of states and provide novel insight into local atomic forces in dense
monoatomic systems.

2.2 Introduction

Advances in neutron and X-ray scattering analysis have significantly furthered our understanding of self-assembly
and dynamic transport properties in dense fluid systems [52, 53]. Scattering analysis is therefore an important and
necessary component in the development and validation of atomistic force fields aimed at predicting both micro- and
macroscopic thermodynamic properties over a wide range of states. However, strikingly contradictory predictions
between experimental and simulated microstructures have been reported in relatively simple systems, including
monoatomic liquid metals [54], aromatic hydrocarbons [33], and water [55]. Given the proliferation of accessible
neutron and X-ray scattering instrumentation, advances in computational analysis, and development of machine learning
approaches, it is relevant to revisit whether scattering data can improve force fields for fluid property predictions and
provide insight into local atomic forces.

One approach to benchmark force fields to scattering data is to calculate the underlying interatomic potentials from
the experimental pair correlation functions, the so-called inverse problem of statistical mechanics. A number of
well-established inversion techniques have been proposed, including Ornstein-Zernike (OZ) integral relation methods
[16, 56–59], Yvon-Born-Green (YBG) theories [60–64], Schommer’s algorithm [28], hypernetted chain methods [18,
65], the generalized Lyubartsev–Laaksonen approach [66–68], empirical potential structure refinement (EPSR) [31],
and a neural network [69]. However, there is little evidence that interatomic potentials obtained from these techniques
can reliably predict thermodynamic behavior for real liquids. For example, Soper showed that O-O and H-H site-site
interatomic potentials derived from EPSR applied to scattering data of liquid water predict a 4 times more negative
excess internal energy compared to the experimental value [31] and later concluded that EPSR cannot be used to derive
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a reliable set of site-site pair potentials for a given system [34]. A recent scattering study on supercritical krypton found
rapid short-range oscillations in EPSR-derived interatomic potentials that led the authors to conclude that augmentation
of the EPSR algorithm is required to obtain a more accurate representation of the real physical system [35]. Additionally,
the remaining studies on structure-inversion of real liquids reported no validation of the interatomic potentials to predict
fluid properties [70–74]. Notably, in a review of structure-inversion methods it is opined that the general purpose of
these techniques is not to derive or evaluate interatomic potentials, but rather to determine molecular configurations
that are consistent with the scattering data [75]. Therefore, it remains to be shown if scattering derived potentials can
predict atomic trajectories consistent with experimental scattering measurements while also accurately modeling other
thermodynamic properties.

The atomic length scale probed by experimental scattering measurements also confers an additional opportunity,
specifically whether it is possible to learn details of the local interactions independent of assumptions on a specific
model potential form (e.g., 12-6 Lennard-Jones). For example, the rate of short-range repulsive decay indicates
the propensity of an atom to deform in a collision, such that relaxation from an infinitely steep potential wall to a
finite exponential or power-law decay represents the transition from hard- to soft-particle collision dynamics. The
approximate collision diameter may be estimated by the radial position where the potential energy intersects zero, and
the pairwise radial separation of zero force describes the effective dispersion energy. Provided structure-optimized
potentials demonstrate the ability to predict emergent thermodynamic properties, their application provides a bridge
between local atomic physics and continuum behavior.

2.3 Results and Discussion

In this letter, force fields were determined for four noble liquids (Ne, Ar, Kr, Xe) using a machine-learning augmented
Schommer’s algorithm, referred to as structure-optimized potential refinement (SOPR), to refine pair potentials
and obtain convergence between simulated and experimental pair distribution functions. Modifications to an initial
reference potential are informed by numerical implementation of the point-wise Henderson’s inverse theorem and
augmented via Gaussian process regression with a squared-exponential kernel function described in Equations (17)
and (20), respectively. The structure-optimized potentials predict excellent representations of both the experimental
pair distribution functions (Figure 6) and saturated vapor-liquid fluid properties. Consequently, structure-optimized
potentials are validated using experimentally-consistent observations on both the micro- and macroscopic length scales,
motivating the analysis of specific properties of the generated potentials. Additionally, the monoatomic structure and
spherical symmetry of the noble gas system facilitates the comparison of the structure-optimized potentials (Figure 7)
to reference ab initio potentials obtained in the low-density state from coupled cluster theory [76–79], referred to as
reference quantum dimer potentials. This comparison reveals state-dependent changes of many-body forces present in
the experimental systems that were collected at states with varying reduced temperatures (Tr) relative to the critical
point.

The structure-optimized potentials collected for fluids near their critical point (Ne-42K, Kr-199K, Xe-274K at Tr = 0.95)
exhibit softer repulsive decay, insignificant change to the collision diameter, and a substantial reduction in dispersion
energy with respect to reference quantum dimer potentials. Thus, the ensemble averaged many-body behavior near
the critical point results in softer particle collisions with decreased particle attraction. Near the triple point (Ar-85K
at Tr = 0.56), structure-optimized potentials show no significant change in the repulsive exponent, a 1.5 % increase
in collision diameter, and a reduction in dispersion energy (Figure 7(b)) compared to the quantum dimer potential.
Many-body effects therefore had a negligible effect on the particle stiffness while decreasing particle attraction near the
triple point. The observation that the dispersion energy correction was relatively smaller for the near triple point potential
compared to the near critical point potentials suggests that the dispersion energy is a function of the thermodynamic
state, which is discussed in the context of temperature-dependent many-body effects later.

It is instructive to compare the structure-optimized potentials to widely employed transferable pair potential functions,
such as the () ↓6) Mie potential,

vMie
2 (r) =

)
) ↓6

(
)
6

) 6
)↓6

∋
[(

!
r

))
↓
(

!
r

)6]
(7)

where ) is the short-range repulsion exponent, ! is the collision diameter (Å), and ∋ is the dispersion energy (kcal ·
mol↓1) [80]. The () ↓6) Mie potential offers increased flexibility over the standard (12↓6) Lennard-Jones potential
since the repulsion exponent may be varied to produce a wider array of potential shapes. Structure-optimized potentials
were fit to the () ↓6) Mie function via Bayesian regression and plotted as red lines in Figure 7. Note that the excellent
quality-of-fit of structure-optimized potentials to the () ↓6) Mie function indicates that the fitted parameters (listed in
Table 1) can closely approximate the thermodynamic predictions of the tabulated structure-optimized potentials.
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Figure 6: Reference potential radial distribution functions (grey dotted line) compared to the converged simulated
radial distribution functions (blue circles) and experimental radial distribution functions (black line). Inset figures show
the first solvation shell of the radial distribution function.

Figure 7: Tabulated structure-optimized potentials (blue) and () ↓ 6) Mie potentials determined with Bayesian
regression (red) are shown with reference quantum dimer potentials (grey). Inset figures show the short-range repulsive
region of the corresponding structure-optimized potential.
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Table 1: Summary of () ↓6) Mie potential parameters determined by Bayesian linear regression and modifications
to the reference quantum dimer potentials in terms of the (! ,∋) parameterization. ∆! and ∆∋ are shown as percent
deviations from the ab initio parameter values given in Table 3.

Element ) ! (Å) ∋ (kcal/mol) ∆! (%) ∆∋ (%)
Ne 11 2.77 0.063 0.31 -48.4
Ar 12 3.40 0.239 1.50 -16.7
Kr 14 3.58 0.359 -0.08 -38.3
Xe 13 3.91 0.484 0.51 -40.3

Table 2: Simulated critical temperatures (T sim
C ) and densities (#sim

C ) with statistical uncertainty calculated from 5
independent GCMC simulations. Percent error between simulated and experimental critical temperature and density are
also shown.

Element T sim
C (K) T err

C (%) #sim
C (kg/m3) #err

C (%)
Ne 43.84 ± 0.06 -1.33 488.4 ± 1.08 0.91
Ar 154.27 ± 0.16 2.40 528.9 ± 0.84 -1.32
Kr 216.58 ± 0.60 3.36 952.7 ± 3.62 5.04
Xe 300.99 ± 0.28 3.98 1142.9 ± 1.76 4.85

Transferability of the potentials was assessed by performing vapor-liquid equilibrium (VLE) calculations from the triple
to critical point using histogram-reweighting grand canonical Monte Carlo (GCMC) simulations in the GPU-Optimized
Monte Carlo (GOMC) simulation package [81] (see Supporting Information). Figure 8 shows vapor and liquid densities
for structure-optimized potentials fit to () ↓6) Mie potentials (red triangles) compared with experimental data (black
lines) compiled from the National Institute of Standards and Technology (NIST) [82]. The Ne-42K structure-optimized
force field predicts liquid densities within 0.1-2.5% relative error between 30-40K, on par with the top-performing
Lennard-Jones force field from Vrabec et al. [83] and outperforming the next closest model [84] by as much as
10%. The Ar-85K, Kr-199K, and Xe-274K force fields are less accurate, with liquid density relative errors of 0.2-5%
(85-140K), 6.2-10.1% (120-180K) and 4.7-8.4% (190-260K), respectively. Simulated critical points determined with
the Ising-type critical point scaling law [85] and law of rectilinear diameters [86] are provided in Table 2.

A recently developed series of () ↓ 6) Mie force fields benchmarked to noble gas vapor-liquid equilibrium (VLE)
provides an excellent comparison to the structure-optimized force fields proposed in this work. In general, both force
fields predict similar repulsion exponents () ) and dispersion energies (∋). One interesting observation is that both the
structure and VLE-optimized force fields predict an increase in the repulsive exponent with increasing atomic weight.
Mick et al. [87] demonstrated that varying the repulsive exponent improved the simultaneous prediction of saturated
densities and vapor pressures, supporting the conclusion that static structure is sensitive to subtle variations in the pair
potential. The most consequential difference between the two models is that the structure-optimized force field gives
systematically lower predictions for the collision diameter (! ), causing the simulated liquid density to be overestimated
compared to the experimental value. It is notable that the reported differences in the collision diameter (0.01-0.05 Å)
are approximately one order of magnitude smaller than the real-space resolution of the experimental diffraction data
(0.4-0.7 Å). Modern, high-flux scattering instruments can achieve real-space resolution of approximately 0.05 Å, on the
same order as the error in the collision diameter, suggesting that more accurate potentials may be determined from
repeating neutron scattering measurements on noble gases with modern instruments [8].

The observation that structure-optimized potentials can estimate vapor-liquid coexistence behavior from a single neutron
scattering measurement suggests that structure-inversion may be a promising approach to develop force fields for
materials where experimental phase behavior is absent or impractical to obtain. The phase behavior and criticality of
liquid uranium (U) is one of many important and unresolved examples relating to nuclear reactor design and safety
analysis. Neutron diffraction data on solid & -U exists to temperatures as high as 1045K [88] and X-ray diffraction
patterns of ∗-U close to the melting point (1405K) are well-characterized [89], but the phase coexistence line and critical
point remain unknown, with critical temperature predictions ranging from 5000-13000K [90]. However, our results
suggest that scattering measurements of liquid U may enable estimation of vapor-liquid phase coexistence via GCMC
simulations with a structure-optimized embedded atom model or set of state dependent structure-optimized potentials.

Structure-inversion may also enable quantification of liquid state many-body effects. Quantum calculations on Kr-Ar-Ar
and Ar-Ar-Kr trimers have revealed that noble gases experience two important many-body effects: (1) 3-body exchange
repulsion and (2) the exchange/dispersion quadropole induced dipole [91]. The averaged pairwise influence of these
many-body interactions decreases the short-range repulsion exponent and the dispersion energy [92], which is in
agreement with the behavior observed in the structure-optimized potentials obtained near the critical point. Self-
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Figure 8: (Top) Simulated phase coexistence curves (red triangles) are shown with experimental phase data (black
lines). Simulated and experimental critical points are given by the open red circle and open black square, respectively.
(Bottom) Clausius-Clapeyron plots of the simulated pressure (red triangles) compared to experimental pressures (black
lines).
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consistent field calculations of electron distributions in Ar clusters have shown that the electron cloud is compressed
at higher densities, and that this compression reduces the probability of exchange repulsion [93]. Additionally,
experimental results from collision-induced depolarized light scattering on compressed H2 demonstrated that exchange-
dependent many-body interactions become more prominent with increasing temperature [94]. It is therefore expected
that many-body effects in noble gases should be less dominant near the triple point, explaining why the short-range
decay rate for the Ar-85K structure-optimized potential was unchanged and the well-depth correction smaller than
in the near critical point states. This conclusion is also supported by analyzing trends in the structural many-body
correction for each fluid at near triple and critical point conditions (see Supporting Information). Further analysis with
quantum mechanical and explicit 3-body dispersion models, such as the Axilrod-Teller potential [95–97], are reserved
for future study on high-resolution scattering data sets obtained with state-of-the-art neutron techniques.

We demonstrate that transferable pair potentials can be reconstructed from a single neutron scattering measurement for
monoatomic liquids, and further; that structure-inversion techniques have fundamental and interdisciplinary applications
bridging experimental scattering, molecular simulation, and quantum mechanics. Of particular interest is the prediction
of thermodynamic properties at extreme conditions, such as high temperature and pressure materials, molten salts,
and liquid metals. The inclusion of experimental diffraction results for optimizing effective pair potentials may also
facilitate improvements to local structure predictions for fluid mixtures and molecular liquids. However, incoherent
and inelastic scattering corrections [4], as well as non-uniqueness of the partial structure factor decomposition, will
need to be addressed to extend the presented techniques to complex liquids. Finally, the methods presented in this
letter may be applied to benchmark force fields for coarse-grained simulations, which has seen a growing interest in
structure-inversion techniques [98, 99].

2.4 Theory and Computational Methods

The following section provides the relevant definitions, statistical mechanics, and necessary computational details of the
proposed machine learning assisted structure refinement method. First, the microstructure is considered as the local
atomic density correlation and is formalized by counting the number of atomic neighbors as a function of position with
respect to a reference atom and taking the ensemble average,

g(r) = 1
#

〈
1
N

N

∀
i=1

N

∀
j=1

∃ 3(r↓ r j + ri)

〉
(8)

where g(r) is referred to as the radial distribution function, ∃ 3 is the three-dimensional Dirac delta function, # is
the thermodynamic density and N is the total number of particles in the system. The radial distribution function and
pair correlation function, h(r), are related by, h(r) = g(r)↓ 1. Due to the lack of long-range order in liquids, the
isotropically-averaged radial distribution function is related to the experimentally observed structure factor, S(Q), which
for a monoatomic liquid is given by,

S(Q) = 1+
4∀
Q#

→b↑2

→| f (Q)|2↑

∫ !

0
r[g(r)↓1] sin(Qr)dr (9)

where Q is the momentum transfer, b is the scattering length density, f (Q) is the form factor, and # is the atomic
number density [6].

The potential energy can be written as a sum of n-body potential energy terms such that,

U(r) =
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where vp(r1,...,p) is a position dependent function that assigns a potential energy to a subset containing p ↘ N atoms
for a given configuration ri,...,p [100]. We further simplify this expression by neglecting the external field contribution
(p = 1) and averaging higher-order many-body terms (p ↔ 3) into a state-dependent pair term,

U(r;# ,T ) =
N

∀
i=1

N

∀
j ⇐=i

[
v2(ri j)+ vm

2 (ri j;# ,T )
]

(11)
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such that vm
2 (ri j;# ,T ) is explicitly dependent on the atomic positions and implicitly dependent on the physical state

(temperature, density, etc). The bracketed quantity in Equation (11) is defined as the effective pair potential,

ve f f
2 (ri j;# ,T ) = v2(ri j)+ vm

2 (ri j;# ,T ) (12)

which cannot be determined exactly for a state-dependent ensemble [101] but can be optimized to reproduce a set of
experimentally observed thermodynamic properties, such as structure [102], heat of vaporization [103], or vapor-liquid
equilibrium [81]. The pair potential defined in Equation (12) is the most common non-bonded term in the Hamiltonian
of classical force fields and is typically modeled as a hard-particle, Lennard-Jones, () ↓ 6) Mie, Buckingham, or
Yukawa potential.

Pairwise additivity imposes important theoretical constraints on the relationship between the potential energy and
pair correlation function. Henderson proved that for pairwise additive, constant density ensembles that there exists a
one-to-one map between the effective pair potential and the radial distribution function up to an additive constant [22,
26, 104]. In monoatomic liquids with spherical symmetry, the structure-potential uniqueness theorem on a finite radial
interval [r⇒,r⇒⇒] such that r⇒⇒ > r⇒ and r⇒,r⇒⇒ ≃ R+

0 , is equivalent to,

∫ r⇒⇒

r⇒
∆v2(r)∆g(r)dr ↘ 0 (13)

where ∆v(r) and ∆g(r) are the difference between a model (M) and target (T) pair potential and radial distribution
function, respectively [105].

∆v2(r) = vM
2 (r)↓ vT

2 (r)

∆g(r) = gM(r)↓gT (r)
(14)

Note that the structure-potential uniqueness theorem in the form of Equation (13) is written in terms of the r-coordinate
only due to spherical symmetry. Initially, Equation (13) appears uninformative since the inequality prevents direct
calculation of the target potential at any r value. The situation is amenable under the assumption that the integrand is
continuous and differentiable, so that Equation (13) can be rewritten using the mean value theorem,

(r⇒⇒ ↓ r⇒)
〈

∆v2(r)∆g(r)
〉r⇒⇒

r⇒
↘ 0 (15)

where the bracketed quantity represents the average of ∆v2(r)∆g(r) over finite interval [r⇒,r⇒⇒]. Notice that for this
inequality to be satisfied in the limit (r⇒⇒ ↓ r⇒)⇓ 0, it must hold at any point ro ≃ r so that,

∆v2(ro)∆g(ro) ↘ 0 (16)

which is true only when ∆v2(ro) ⇐= 0 and ∆g(ro) ⇐= 0. The practicality of this point-wise structure-potential uniqueness
theorem is now clear, since Equation (16) prescribes what direction that an initial guess for the model potential should
be corrected given the difference between the model and target experimental radial distribution function at any point
ro ≃ r; namely, by decreasing the potential if ∆g(ro) is negative and increasing the potential if ∆g(ro) is positive. While
Henderson’s structure-potential uniqueness condition has been implemented previously to obtain empirical estimates
of pair potential functions in Schommer’s algorithm and EPSR, this derivation demonstrates the validity of its use at
an arbitrary point without the potential of mean force approximation g(r) = exp

[
↓&ve f f

2 (ri j;# ,T )
]

where & = 1
kBT ,

which only holds in the dilute limit [17].

The structure-potential uniqueness condition is implemented via iterative refinement of a reference potential, v0
2(ri),

with an energy scaled, continuous sum of the radial distribution function error such that,

v(n)
⇒

2 (ri) = v0
2(ri)+ ∗&↓1 ∀

n
∆g(n)

⇒
(ri) (17)

where i is the radial index of the tabulated potential, v(n)
⇒

2 (ri) is the predictor estimated pair potential at iteration n, & is
the inverse thermal energy (kBT )↓1, and 0 < ∗ ↘ 1 is an empirical scaling constant to dampen the potential correction.
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Comparing the refinement Equation (17) to Equation (12), it is clear that if v0
2(ri) is selected as the quantum dimer

potential that v(n)
⇒

2 (ri) is the estimated effective pair potential and ∗&↓1 ∀n ∆g(n)
⇒
(ri) is the pair averaged many-body

term. Note that the prime notation in v(n)
⇒

2 (ri) denotes that the pair potential is the predictor estimate before smoothing
and treatment of numerical and experimental uncertainty.

In a standard Schommer’s algorithm, the potential predicted by Equation (17) is passed to the next iteration without
smoothing or uncertainty quantification, which has been shown to reduce the methods robustness [18, 75]. Here
a squared-exponential kernel Gaussian process (GP) is applied to the predictor estimate to account for numerical
fluctuations arising from the molecular dynamics simulations as well as systematic over-fitting to uncertain experimental
data. A GP is a non-parametric stochastic process, equivalent to an infinitely wide neural network of a single layer, that
generalizes the concept of probability distributions to functions [106]. In this implementation, the GP takes the potential
estimated by Equation (17) as an input and returns a Gaussian probability distribution of continuous and infinitely
differentiable functions fitting the predictor estimate [38]. Thus, a GP acts as an uncertainty propagator and smoothing
function that, by nature of its Gaussian form, inherits an analytical Fourier transform that equivalently represents the
data in real- or reciprocal-space without introducing significant truncation error [107]. Parallel techniques to enhance
the accuracy of Fourier transforms in inverse problems, such as fitting structure factors to Poisson series expansions
implemented in the EPSR and Dissolve packages and Tóth’s Gauss-Newton parameterization and Golay–Savitzky
smoothing [67, 68], can therefore be replaced with GP regression. Notably, SE-GP regression can be integrated into any
existing iterative predictor-corrector without modifications to the base algorithm.

The predicted structure-optimized potential is then expressed as a k-multivariate normal distribution (N ) of random
variables such that,

v(n)
⇒

2 (r1),v
(n)⇒
2 (r2), ...v

(n)⇒
2 (rk) ⇑ N (µ(r),K(ri,r j)) (18)

where r1 < r2 < ... < rk are the radii positions for the potential, k is the number of points in the structure-optimized
potential, µ(r) is a mean function, and K(ri,r j) is a squared-exponential covariance function (or kernel) describing the
relatedness of observations v(n)

⇒

2 (ri) on v(n)
⇒

2 (r j). Here the squared-exponential kernel is applied,

K(ri,r j) = !̄2e↓
(ri↓r j)

2

2ω2 + ∃i j!2
noise (19)

where !̄2 is the expected variance of the interatomic potential, ω is the correlation length and !2
noise is the variance

due to numerical latent effects. Notice that if the distance between two points ri and r j is small, exp(ri ↓ r j)
2/2ω2

approaches unity and v(n)
⇒

2 (ri) and v(n)
⇒

2 (r j) are strongly correlated. As the distance between ri and r j increases,
exp(ri ↓ r j)

2/2ω2 vanishes such that v(n)
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2 (ri) and v(n)
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2 (r j) are uncorrelated. The hyperparameters (!̄ , ω, !noise) are
optimized by maximizing the marginal likelihood (model evidence) p(v(n)

⇒

2 (r)|r, !̄ , ω, !noise).

Regression of v(n)
⇒

2 (r) over an arbitrary set of radii r⇒ = {r⇒i} ⇔ r1 ↘ r⇒1 < r⇒2 < ... < r⇒m ↘ rk is equal to the mean of the
k-variate normal distribution,

v(n)2 (r⇒) = [KT
r⇒,r ↓!2

noiseI]K↓1
r,r v(n)

⇒

2 (r) (20)

where v(n)2 (r⇒) is the final structure-optimized potential at iteration n and Kr⇒,r is the squared-exponential covariance
matrix between coordinate representations r⇒ and r. Figure 9 shows that GP regression smooths numerical artifacts in
the interatomic force when the length scale hyperparameter is on the order of ω⇑ 1 Å. A detailed comparison between a
standard and GP assisted Schommer’s algorithm is provided in the Supporting Information.

The GP regressed structure-optimized potential is then applied in the molecular simulation corrector to calculate a
simulated radial distribution function, g(n)(r⇒). The molecular simulation corrector is a Canonical (NV T ) molecular
dynamics simulation performed in HOOMD-Blue [108]. MD simulations were initiated with a 500 atom fcc-lattice
at the experimental density and equilibrated with Langevin dynamics for 5↖ 103 timesteps (dt = 5 femtoseconds).
Tabulated structure-optimized potentials were truncated at 3rvdW with analytical tail corrections, and simulated radial
distribution functions were calculated with MDAnalysis [109, 110] from 1↖105 timestep trajectories sampled at 100
timestep intervals. Convergence is checked against the average squared error between the simulated and experimental
radial distribution function such that →[∆g(n)(r⇒)]2↑< 10↓4, which generally is satisfied within 5-10 iterations at scaling
constant ∗ = 0.2.
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Figure 9: The force calculated from the Xe-274K tabulated potential (blue circles) compared to a non-parametric GP
regressed potential at three different length-scale parameters (ω = 0.05, 0.25, 1.00 Å) (orange, green, and purple line).

Table 3: Reduced temperature (Tr = T /Tc) and atomic density (#) are listed for the neutron scattering experimental
conditions. Reference van der Waal radii (rvdW ) are used to define pair potential truncation in molecular dynamics
simulations. !ai is defined as the radius where the quantum dimer pair potential transitions from positive to negative
potential energy and ∋ai is the potential minimum.

Element Tr # (1/Å3) rvdW (Å) !ai (Å) ∋ai (kcal/mol)
Ne 0.95 0.02477 2.91 2.76 0.122
Ar 0.56 0.02125 3.55 3.35 0.287
Kr 0.95 0.01187 3.82 3.58 0.582
Xe 0.95 0.00881 4.08 3.89 0.811

Structure-inversion was initiated with a target experimental radial distribution function and a reference (or model) pair
potential, v0

2(ri). Experimental radial distribution data determined with elastic neutron scattering [2, 13, 102] were
compiled at the thermodynamic state conditions listed in Table 3. Reference quantum dimer potentials were obtained
via couple-cluster theory/t-aug-cc-pV6Z quality basis sets with spin-orbit relativistic corrections. In practice, any
of the numerous existing pair potentials for the noble gases may be applied as a reference potential with equivalent
outcomes for the structure-optimized potential (see Supporting Information). However, selecting the quantum dimer
pair potential as the reference guarantees that the structure-optimized refinement correction is equal to the pairwise
many-body contribution to the effective pair potential, vm

2 (ri j;# ,T ) = ∗&↓1 ∀n ∆g(n)(r⇒i).

2.5 Supporting Information

2.5.1 Grand Canonical Monte Carlo Simulations

Vapor-liquid coexistence curves and vapor pressures were determined from histogram-reweighting Monte Carlo
simulations in the grand canonical ensemble[111–113]. Simulations were performed with GPU Optimized Monte
Carlo (GOMC), version 2.70[81]. All calculations were performed in a cubic cell with a side length of 25 Å. Initial
configurations were generated with Packmol [114]. Psfgen was used to generate coordinate (*.pdb) and connectivity
(*.psf) files[115]. The Mie potentials were truncated at 10 Å and analytical corrections were applied to the energy and
pressure[116]. A hard inner cutoff was used to reject any MC moves that placed atom centers closer than 0.5 Å. A move
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Figure 10: Relative error in liquid density for the noble liquids. Relative error plots were generated with SOPR VLE
data and compared to the reported error from other force fields.

ratio of 40% displacements and 60% molecule transfers was used. Configurational-bias Monte Carlo (CBMC) was used
to improve the acceptance rate for molecule transfers [117]. Three trial locations were used for simulations near the
critical temperature, while 8 trial sites were used for the lowest temperature simulations (Tr=0.65). Acceptance rates for
molecule insertions in liquid phase simulations were between 0.5% and 6.2%, depending on, chemical potential, and
temperature.

To generate the phase diagrams predicted by each parameter set, 9 to 10 simulations were performed; one simulation to
bridge the gas and liquid phases near the critical temperature, four in the gas phase, and 5 to 6 liquid simulations. For
all noble gases, 2x106 Monte Carlo steps (MCS) were used for equilibration, followed by a data production period of
1.8x107 steps or 4.8x107 steps for gas and liquid phase simulations, respectively. Histogram data were collected as
samples of the number of molecules in the simulation cell and the non-bonded energy of the system. Samples were
taken on an interval of 500 MCS. Histograms from the GCMC simulations were reweighted and properties calculated
as described by Messerly [118]. Averages and statistical uncertainties were determined from five independent sets of
simulations, where each simulation was started with a different random number seed. Phase coexistence data for each
noble gas is provided in tables 4 to 7 and compared to existing force field models in Figure 10.

2.5.2 Tabulated SOPR Results

Tab-delimited text files (.txt) for experimental radial distribution functions [2, 13, 102] and tabulated structure-optimized
potentials obtained in this study are included as supplemental documents. Units for the radial distribution function are
in angstrom (Å) in the radius and dimensionless in the g(r). Units for the provided structure-optimized potentials are
angstrom (Å) in the radius and kcal/mol in the potential energy.

2.5.3 Convergence Stability

In general, the reference potential can impact the stability of the molecular simulation as well as the interpretation of the
structural correction term. In this study, it was possible to directly equate the structure refinement term and the ensemble
averaged many-body term since an accurate quantum dimer reference potential was applied. However, if one requires
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Table 4: Phase coexistence data from SOPR Ne-42K potential.

T (K) #liq (kg/m3) #vap (kg/m3) P (bar) dHv (kJ/mol) Z
43 733.714264 256.047536 23.57491 0.655222 0.519732
42 802.903123 211.968635 20.710539 0.809184 0.564664
41 858.831461 173.977971 18.089103 0.94601 0.615533
40 902.873606 144.342911 15.718855 1.057575 0.660804
39 940.575247 120.887088 13.581881 1.150318 0.699232
38 974.392979 101.635719 11.659854 1.230199 0.732772
37 1005.361735 85.477948 9.937776 1.300566 0.762674
36 1034.327748 71.748811 8.402114 1.363704 0.789545
35 1061.845082 59.979902 7.040359 1.421216 0.814005
34 1088.031234 49.834866 5.8411 1.473944 0.836737
33 1113.06391 41.095363 4.79364 1.522527 0.857957
32 1137.482411 33.601697 3.886811 1.567896 0.877381
31 1161.202543 27.203598 3.109184 1.609999 0.894878
30 1183.701132 21.764617 2.45 1.648361 0.910751
29 1205.099967 17.173856 1.898661 1.683608 0.925314
28 1225.73425 13.340107 1.444291 1.716293 0.938529
27 1246.346124 10.178756 1.075976 1.747296 0.950288
26 1267.238749 7.607599 0.782745 1.777414 0.960517
25 1287.667888 5.551135 0.554253 1.806016 0.969351

Table 5: Phase coexistence data from SOPR Ar-85K potential.

T (K) #liq (kg/m3) #vap (kg/m3) P (bar) dHv (kJ/mol) Z
152 798.196968 291.533313 45.571786 2.243789 0.494141
150 836.656053 257.222877 42.268671 2.591589 0.526387
148 874.397214 226.119637 39.149769 2.934793 0.562104
146 908.89679 199.775981 36.212629 3.246104 0.596555
144 939.435052 177.960207 33.447597 3.515884 0.627142
142 966.572627 159.643406 30.843602 3.749191 0.65375
140 991.203415 143.860244 28.391126 3.955419 0.677329
138 1014.0377 129.965504 26.082236 4.142081 0.698752
136 1035.52168 117.564032 23.910432 4.313827 0.718554
134 1055.91477 106.402261 21.869793 4.473382 0.737011
132 1075.37469 96.299118 19.954885 4.62246 0.754289
130 1094.01521 87.114077 18.160762 4.762317 0.770526
128 1111.9393 78.733568 16.482801 4.894038 0.785862
126 1129.25415 71.065144 14.916567 5.01865 0.800437
124 1146.0727 64.035994 13.457917 5.137141 0.814362
122 1162.49057 57.588697 12.10266 5.250322 0.827692
120 1178.56105 51.677614 10.846588 5.358677 0.840417
118 1194.2921 46.262093 9.685515 5.462372 0.852513
116 1209.64317 41.304773 8.615326 5.561308 0.863972
114 1224.53168 36.770416 7.632034 5.65525 0.874829
112 1238.91774 32.627499 6.731743 5.744209 0.885141
110 1252.88688 28.848214 5.910461 5.828782 0.894943
108 1266.59482 25.408149 5.164272 5.909884 0.904268
106 1280.1958 22.28512 4.48897 5.988369 0.913082
104 1293.80881 19.457582 3.880413 6.064929 0.921381
102 1307.41921 16.905474 3.334503 6.139582 0.929153
100 1320.88493 14.609372 2.84726 6.211769 0.936441
98 1334.0903 12.551765 2.414737 6.281104 0.943246
96 1347.00602 10.715882 2.033112 6.347769 0.949619
94 1359.65999 9.086014 1.698543 6.412183 0.955572
92 1372.01604 7.647196 1.407326 6.474152 0.961156
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Table 6: Phase coexistence data from SOPR Kr-199K potential.

T (K) #liq (kg/m3) #vap (kg/m3) P (bar) dHv (kJ/mol) Z
210 1531.11817 459.974951 50.626437 3.765603 0.528218
205 1645.79806 366.381497 43.961845 4.596145 0.589887
200 1742.68564 297.413939 37.995176 5.276635 0.64375
195 1825.46461 245.594213 32.649925 5.824705 0.687084
190 1897.63413 204.286876 27.866868 6.283993 0.723559
185 1961.92976 170.227413 23.603813 6.681208 0.75537
180 2021.7309 141.580536 19.823791 7.036668 0.78395
175 2078.16333 117.248277 16.492711 7.359511 0.810074
170 2131.4784 96.538731 13.578873 7.653746 0.833855
165 2181.75136 78.900464 11.051246 7.921878 0.855509
160 2228.9557 63.882448 8.880364 8.166045 0.8756
155 2274.54894 51.154757 7.03666 8.393506 0.894387
150 2320.48457 40.456479 5.488944 8.611949 0.911566
145 2366.20448 31.546962 4.206358 8.819254 0.926747
140 2409.88941 24.20158 3.159392 9.010171 0.93975
135 2451.57431 18.215968 2.319986 9.186547 0.950773
130 2491.53902 13.40713 1.660498 9.350053 0.960133
125 2529.71653 9.614336 1.154729 9.501783 0.968318
120 2566.36151 6.690208 0.777101 9.643374 0.975484
115 2603.29991 4.497391 0.503879 9.781788 0.981806
110 2639.67485 2.90476 0.313072 9.915437 0.9874

Table 7: Phase coexistence data from SOPR Xe-274K potential.

T (K) #liq (kg/m3) #vap (kg/m3) P (bar) dHv (kJ/mol) Z
290 1872.4037 526.262111 52.004613 5.440892 0.538123
285 1967.09269 447.677473 46.976381 6.239123 0.581441
280 2054.03333 382.799284 42.336581 6.963763 0.623764
275 2131.14867 330.772546 38.056685 7.58385 0.660695
270 2199.59475 288.319254 34.106135 8.11039 0.691874
265 2261.17401 252.55593 30.461055 8.56687 0.718742
260 2317.52979 221.658863 27.102719 8.97288 0.742652
255 2370.16211 194.549802 24.015796 9.342204 0.764464
250 2420.26327 170.55061 21.186091 9.684 0.784675
245 2468.44759 149.194894 18.600206 10.003237 0.803583
240 2514.7754 130.143936 16.245757 10.301796 0.821372
235 2559.24147 113.137502 14.110993 10.581039 0.838146
230 2602.16918 97.96734 12.183996 10.843475 0.853924
225 2643.96701 84.455192 10.452821 11.091671 0.86869
220 2684.68136 72.445131 8.905584 11.326431 0.882415
215 2724.1085 61.796925 7.530531 11.547532 0.895084
210 2762.2453 52.38534 6.31611 11.755633 0.906699
205 2799.37292 44.095262 5.25085 11.952533 0.917324
200 2835.94066 36.824133 4.323573 12.140646 0.927067
195 2872.3748 30.47986 3.522885 12.322267 0.935986
190 2908.51521 24.978722 2.837801 12.497539 0.944192
185 2943.61226 20.248163 2.257546 12.663904 0.951618
180 2977.54768 16.217716 1.771668 12.821135 0.958263
175 3011.05962 12.81936 1.369788 12.972135 0.964041
170 3045.27725 9.987163 1.041737 13.121276 0.968718
165 3080.69488 7.655546 0.777787 13.270025 0.972114
160 3115.40577 5.762415 0.568922 13.411029 0.974169
155 3148.6791 4.250562 0.40665 13.544108 0.974402
150 3180.41128 3.065916 0.283242 13.67061 0.97227
145 3207.49035 2.156153 0.191456 13.774698 0.966664
140 3227.16642 1.474877 0.125163 13.840011 0.956789
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Figure 11: Structure-optimized potentials are unique up to negligible numerical fluctuations for the Xe-274K scattering
data given a broad range of reference potentials (LJ parameters for Ne, Ar, Kr, Xe, and Ra).

only a structure-optimized potential and not a quantification of the many-body effects, the reference potential can be
arbitrarily selected if it is stable within the molecular simulation. For example, Figure 11 shows Xe-274K structure-
optimized potentials given five different reference potential conditions; namely, LJ parameters for Ne, Ar, Kr, Xe, and
Ra [119, 120]. Clearly, the predicted structure-optimized potential is independent of the reference potential in this
system, although in principle this may not hold in complex liquids or for thermodynamic states near the amorphous
glass transition where the structure does not explicitly depend on the non-bonded potential energy (e.g. as T⇓ 0).

In addition to the reference potential, the scaling coefficient defined in Equation (17) can also impact the convergence rate
and stability. For example, structure inversion runs for the Xe-274K system at varying scaling coefficient demonstrates
that a scaling coefficient of 0.6 is ideal for rapid convergence and low relative deviation from the experimental structure
at high iteration number (Figure 12). Therefore, scaling coefficients can significantly impact computational performance
and should be optimized for physical systems where molecular simulation is computationally expensive (e.g. high
molecular weight liquids).

2.5.4 Gaussian Process Regression

Gaussian process (GP) regression is a powerful and robust method to perform non-parametric regression of complex
functions. One of the main benefits of GP regression is that it has an assumption-free, analytical Fourier transform
(FT) that is more accurate than a discrete Fourier transform (DFT) in noise-free and noise-corrupted signals. In
fact, it has been shown that conventional DFT is a special case of the more general Bayesian formulation of Fourier
transforms that is only possible with a GP regression [107]. With respect to scattering analysis, techniques such as
fitting to Poisson series expansions in EPSR and Dissolve simulation packages [73, 121] were implemented since they
had analytical FTs that improve the convergence and accuracy of the inverse algorithm. Additionally, GP regression
probabilistically smooths the predicted potential, which was shown in the main text to eliminate numerical fluctuations
in the interatomic force that can propagate between refinement iterations. Figure 13 shows that structure-optimized
potentials in a standard Schommer’s algorithm exhibit sub-angstrom fluctuations near equilibrium separation that are
likely caused by the propagation of numerical/experimental noise introduced in the refinement procedure. However,
the GP assisted Schommer’s algorithm smooths the potentials so that they adhere more to transferable potential forms
while still providing an excellent quality-of- fit to the radial distribution function.
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Figure 12: Normalized relative error in the simulated and experimental radial distribution function, defined as the
sum-of-square residual (ssr) at iteration n divided by the initial ssr, R/Ri.

Figure 13: Structure-optimized potentials with and without GP regression.
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2.5.5 Triple and Critical Point Structural Many-Body Corrections

SOPR potentials were generated at near triple and critical point conditions for each fluid where scattering data was
available (Ne, Kr, and Xe). For each fluid, the dispersion energy decreased with increasing temperature (Figure
14) consistent with the expected increase in exchange repulsion effects, and the repulsive exponent decreased with
increasing temperature (Figure 15). The change in the short-range repulsion rate between the near triple and critical
point states was found to be negligible in Ne, likely because the difference in absolute temperature is smaller (16 K)
compared to the difference in absolute temperature for Kr (69 K) and Xe (105 K). Additionally, inelastic and incoherent
scattering corrections have been shown to broaden the radial distribution function in hard spheres [4] resulting in a
decrease in both the height and slope of the first solvation shell. Furthermore, post- processing and low instrument
resolution for the available scattering data propagate non-negligible error to the determined structure factors which
is further confounded by discrete Fourier transform truncation error [72]. While these realities motivate the use of
uncertainty quantification in structure inversion, it is likely that new scattering measurements with state-of-the-art
neutron instruments must be obtained to draw significant, quantitative conclusions on the many-body corrections.

2.6 Python Notebook Tutorial

In addition to the manuscript, an example code for running SOPR in python was created and posted on GitHub here. The
notebook contains a detailed description of the code functions, basic theory, and results of the method. The example is
for liquid neon which is a traditionally challenging liquid to model with molecular dynamics due to its low temperature
and significant quantum mechanical effects. The notebook provides relevant background on iterative refinement
algorithms, Gaussian process regression, simple liquid molecular simulations in HOOMD-Blue, and visualization of
the SOPR results.
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Figure 14: SOPR potentials for near triple and critical point experimental scattering data.
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Figure 15: Repulsive region of the SOPR potentials for Ne, Kr, and Xe.

3 Accelerated Bayesian Force Field Uncertainty Quantification for Structural Correlations

The previous chapter explored the estimation of pair interactions from experimental neutron scattering data using
Gaussian process (GP) priors conditioned on iterative potential refinement guided by the Henderson inverse theorem.
GPs were shown to provide non-parametric interaction potentials with uncertainty quantification, enabling the construc-
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Figure 16: Local Gaussian processes are like a Formula 1 racer in comparison to standard GPs.

tion of flexible yet physically-justified pair potentials. However, there are instances where it is desirable to reproduce
scattering data as accurately as possible given a parametric potential form. For instance, parametric models are more
widely adopted, easily implemented in existing software packages, and are faster to compute than non-parametric
potentials. In this case, Bayesian inference over the model parameters can be performed with neutron data as the target
quantity-of-interest (QoI).

The main challenge with this approach is not in its construction, but rather the exceptional computational cost of
Bayesian inference due to the curse of dimensionality. The main pinch point is that molecular simulations take a
long time to perform (ranging from minutes to days) and Bayesian inference necessitates performing thousands to
hundreds of thousands of such calculations. In practice, we can alleviate this problem by training machine learning
surrogate (or meta-) models on a smaller subset of simulations and then use this surrogate model in place of the more
expensive molecular simulation. Some commonly used methods for designing surrogate models include polynomial
chaos expansions, neural networks, and GPs.

The built-in uncertainty quantification of GP surrogate models makes them particularly attractive for molecular systems,
particularly when the amount of training data is small. GPs excel with little training data because a well-posed prior
and kernel function can guide the prediction and enforce physically-justified behavior a priori. Of course, these
advantages come with a drawback, namely that the GP evaluation is slow compared to other methods. The content of
this chapter is to describe a "greedy" approximation to a GP that provides highly accurate estimations of the molecular
model prediction at a fraction of the computational time. In summary, the approximation involves splitting a GP along
its independent variable inputs into a subset of GPs, resulting in a reduction in call time-complexity from cubic to
linear in the number of independent variables (turning a standard GP into a speedy race car shown in Figure 16). The
original publication describing a reliable and robust method for uncertainty quantification and propagation to complex
experimental data (i.e. radial distribution functions or electromagnetic spectra) using Bayesian inference is reproduced
from the Journal of Chemical Theory and Computation, 2024, 20, 9, 3798–3808 with permission of the publisher. The
article is also available on arXiv with article identifier arXiv:2310.19108 [122].

3.1 Abstract

While Bayesian inference is the gold standard for uncertainty quantification and propagation, its use within physical
chemistry encounters formidable computational barriers. These bottlenecks are magnified for modeling data with many
independent variables, such as X-ray/neutron scattering patterns and electromagnetic spectra. To address this challenge,
we employ local Gaussian process (LGP) surrogate models to accelerate Bayesian optimization over these complex
thermophysical properties. The time-complexity of the LGPs scales linearly in the number of independent variables,
in stark contrast to the computationally expensive cubic scaling of conventional Gaussian processes. To illustrate the
method, we trained a LGP surrogate model on the radial distribution function of liquid neon and observed a 1,760,000-
fold speed-up compared to molecular dynamics simulation, beating a conventional GP by three orders-of-magnitude.
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We conclude that LGPs are robust and efficient surrogate models, poised to expand the application of Bayesian inference
in molecular simulations to a broad spectrum of experimental data.

3.2 Introduction

Molecular simulations are able to estimate a broad array of complex experimental observables, including scattering
patterns from neutron and X-ray sources and spectra from near-infrared [123], terahertz [124], sum frequency generation
[125, 126], and nuclear magnetic resonance [127]. Recent interest in these experiments to study hydrogen bonding
networks of water at interfaces [128, 129], electrolyte solutions [130], and biological systems [131] has motivated
the continued advancement of simulations to calculate these properties from first-principles [132–134]. However, the
ability to estimate these complex properties comes with a high computational cost. This barrier greatly limits our ability
to quantify how experimental, model, and parametric uncertainty impact molecular simulation predictions, making it
difficult to know whether a model is an appropriate representation of nature or if it is simply over-fitting to a given
training set. Therefore, what is needed is a computationally efficient and rigorous uncertainty quantification/propagation
(UQ/P) method to link molecular models to large and complex experimental datasets.

Bayesian methods are the gold standard for these aims [135], with examples spanning from neutrino and dark matter
detection [136], materials discovery and characterization [137–140], quantum dynamics [141, 142], to molecular
simulation [143–153]. The Bayesian probabilistic framework is a rigorous, systematic approach to quantify probability
distribution functions on model parameters and credibility intervals on model predictions, enabling robust and reliable
parameter optimization and model selection [38, 154]. Interest in Bayesian methods and uncertainty quantification
for molecular simulation has surged [155–160] due to its flexible and reliable estimation of uncertainty, ability to
identify weaknesses or missing physics in molecular models, and systematically quantify the credibility of simulation
predictions. Additionally, standard inverse methods including relative entropy minimization, iterative Boltzmann
inversion, and force matching have been shown to be approximations to a more general Bayesian field theory [43].

The biggest problem plaguing Bayesian inference is its massive computational cost. The two major pinch points are (1)
sampling in high-dimensional spaces, commonly known as the "curse of dimensionality", and (2) the large number
of model evaluations required to get accurate uncertainty estimates. In computational chemistry, these bottlenecks
are magnified since these models are typically expensive. Therefore, rigorous and accurate uncertainty estimation
is challenging, or even impossible, without accelerating the simulation prediction time. One way to achieve this
speed-up is by approximating simulation outputs with an inexpensive machine learning model. These so-called
surrogate models have been developed from neural networks [151, 161], polynomial chaos expansions [162, 163],
configuration-sampling-based methods [164] and Gaussian processes [106, 165, 166].

Gaussian processes (GPs) are a compelling choice as surrogate models thanks to several distinct advantages. GPs are
non-parametric, kernel-based function approximators that can interpolate function values in high-dimensional input
spaces. GPs with an appropriately selected kernel also have analytical derivatives and Fourier transforms, making them
well-suited for physical quantities such as potential energy surfaces [167, 168]. Additionally, kernels can encode physics-
informed prior knowledge, alleviating the "black box" nature inherent to many machine learning algorithms. In fact, a
comparison of various nonlinear regressors for molecular representations of ground-state electronic properties in organic
molecules demonstrated that kernel regressors drastically outperformed other techniques, including convolutional graph
neural networks [169].

Perhaps the most widely adopted application of GP surrogate models in computational chemistry is for model opti-
mization. In the last decade, GP surrogates of simple thermophysical properties including density, heat of vaporization,
enthalpy, diffusivity and pressure have been used for force field design [170–175]. However, to our knowledge
there are no Bayesian optimization studies that apply GP surrogate models to thermophysical properties with many
independent variables, such as structural correlation functions or electromagnetic spectra. In this work, independent
variables (IVs) are defined as the fixed quantities over which a measurement is made (e.g. frequencies along a spectrum
or radial positions along a radial distribution function) and the outcomes of those measurements are referred to as
quantities-of-interest (QoIs).

Measurements of complex QoIs with many IVs are often available or easily obtained, yet are rarely included as
observations in Bayesian optimization of molecular models. One reason why this may be the case is that previous
literature has not outlined accurate and robust approaches to design Gaussian process surrogates for such data. For
example, Angelikopoulous and coworkers did not use GP surrogate models for their Bayesian analysis on the radial
distribution function (RDF) of liquid Ar [170], despite the fact that doing so would significantly reduce computation
time. It is likely that GPs have not been previously used for complex QoIs due to high training and evaluation costs.
Specifically, GPs have a cubic time-complexity in the number of IVs, which quickly becomes prohibitively expensive
as experimental measurements obtain higher ranges and resolutions.
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Local Gaussian processes (LGPs) are an emerging class of accelerated GP methods that are well-equipped to handle large
sets of experimental data. These so-called "greedy" Gaussian process approximations are constructed by separating a GP
into a subset of GPs trained at distinct locations in the input space [165, 176–178]. Computation on the LGP subset scales
linearly with the number of IVs, is trivially parallelizable, and easily implemented in high-performance computing (HPC)
architectures [179, 180]. State-of-the-art LGP models have been used to design Gaussian approximation potentials
(GAPs) [181], a type of machine learning potential used to study atomic [182–184] and electron structures [181, 185],
as well as nuclear magnetic resonance chemical shifts [186] with uncertainty quantification [155]. However, to our
knowledge LGPs have not been applied as surrogate models for UQ/P on complex experimental data in computational
chemistry.

In this study, we detail a simple and effective surrogate modeling approach for complex experimental observables
common in physical chemistry. LGPs unlock the capability for existing Bayesian optimization schemes to incorporate
complex data efficiently and accurately at a previously inaccessible computational scale. The key feature of the LGP
surrogate model is the reduction in time-complexity with respect to the number of QoIs from cubic to linear, resulting in
orders-of-magnitude speed-ups to evaluate complex observable surrogate models and perform posterior estimation. The
computational speed-up results from reducing the dimensionality of matrix operations and therefore enables Bayesian
UQ/P on experimental data with many IVs. For illustration, consider that a typical Fourier transformed infrared
spectroscopy (FT-IR) measurement may contain data between 4000-400 cm↓1 at a resolution of 2 cm↓1, giving a total
number of QoIs around + = 1800. According to the time-complexity scaling in + , a LGP is estimated to accelerate this
computation compared to a standard GP by approximately 3,240,000x. Source code and a tutorial on building LGP
surrogate models is provided on GitHub.

To demonstrate the method, we trained a LGP surrogate model on the RDF of the () -6) Mie fluid and performed
Bayesian optimization to fit the parameters of the Mie fluid model to a neutron scattering derived RDF for liquid neon
(Ne). The LGP was found to accelerate the + = 73 independent variable surrogate model calculation approximately
1,760,000x faster than molecular dynamics (MD) and 2100x faster than a conventional GP with accuracy comparable to
the uncertainty in the reported experimental data. Bayesian posterior distributions were then calculated with Markov
chain Monte Carlo (MCMC) and used to draw conclusions on model behavior, uncertainty, and adequacy. Surprisingly,
we find evidence that Bayesian inference conditioned on the radial distribution function significantly constrains the
() -6) Mie parameter space, highlighting opportunities to improve force field optimization and design based on neutron
scattering experiments.

3.3 Computational Methods

In the following sections, an outline of standard approaches for Bayesian inference and surrogate modeling with
Gaussian processes is presented. Then, we describe the local Gaussian process approximation and highlight key
differences in their implementation and computational scaling.

3.3.1 Bayesian Inference

Bayes’ law, derived from the definition of conditional probability, is a formal statement of revising one’s prior beliefs
based on new observations. Bayes’ theorem for a given model, set of model input parameters, ( , and set of experimental
QoIs, y, is expressed as,

p(( |y) # p(y|( )p(( ) (21)

where p(( ) is the ’prior’ probability distribution over the model parameters, p(y|( ) is the ’likelihood’ of observing y
given parameters ( , and p(( |y) is the ’posterior’ probability that the underlying parameter ( models or explains the
observation y. Equality holds in Eq. (21) if the right-hand-side is normalized by the ’marginal likelihood’, p(y), but
including this term explicitly is unnecessary since the posterior probability distribution can be normalized post hoc. In
molecular simulations, ( is the set of unknown parameters in the selected model, usually the force field parameters in the
Hamiltonian, to the experimental QoI that the simulation estimates. The observations, y, can be any QoI or combination
of QoIs (e.g. RDFs, spectra, densities, diffusivities, etc). This construction, known as the standard Bayesian scheme, is
generalizable to any physical model and its corresponding parameters including density functional theory (DFT), ab
initio molecular dynamics (AIMD), and path integral molecular dynamics (PIMD).

Calculating the posterior distribution then just requires prescription of prior distributions on the model input parameters
and evaluation of the likelihood function. In this work, Gaussian distributions are used for both the prior and likelihood
functions, which is a standard choice according to the central limit theorem. The Gaussian likelihood has the form,
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where + is the number of observables in y, y( is the model predicted observables at model input ( , and !n is a nuisance
parameter describing the unknown variance of the Gaussian likelihood. Cailliez and coworkers choose the nuisance
parameter as the sum of simulation and experiment variances (!2

n ↗ !2
sim +!2

exp) [171]; however, if these variances are
unknown or one wishes to explore the distribution of variances, the nuisance parameter can be inferred via the Bayesian
inference. Hence, the resulting posterior distribution on the nuisance parameter includes the unknown uncertainty
arising due to the sum of the model and the experimental variances. In this work, the nuisance parameter is treated as
an unknown to be inferred along with the explicit model parameters. Note that in some cases a different likelihood
function may be more appropriate based on physics-informed prior knowledge of the distribution of the observable of
interest (e.g. the multinomial likelihood in relative entropy minimization between canonical ensembles [24]).

The computationally expensive part of calculating Eq. 22 is determining y( at a sufficient number of points in the
parameter space. Generally, this can be achieved by calculating y( at dense, equally spaced points in the parameter
space of interest (grid method), sampling the parameter space with Markov chain Monte Carlo (MCMC) to estimate the
posterior with a histogram (approximate sampling method), or assuming that the posterior distribution has a specific
functional form (i.e. Laplace approximation). Regardless of the selected method, each of these posterior distribution
characterization techniques require a prohibitive number of molecular simulations to adequately sample the parameter
space (often on the order of 105 ↓106), which is infeasible for even modest sized molecular systems.

3.3.2 Gaussian Process Surrogate Models

Gaussian processes accelerate the Bayesian likelihood evaluation by approximating y( with an inexpensive matrix
calculation. A Gaussian process is a stochastic process such that every finite set of random variables (position, time,
etc) has a multivariate normal distribution [106]. The joint distribution over all random variables in the system therefore
defines a functional probability distribution. The expectation of this distribution maps a set of model parameters, ( ∝,
and IVs, r, to the most probable QoI given the model parameters, S(r|( ∝), such that,

E[GP] : ( ∝ ↖ r ′⇓ S(r|( ∝) (23)

where the expectation operator is written in terms of a kernel matrix, K, training set parameter matrix, X̂, and training
set output matrix, Ŷ, according to the equation,

E[GP(( ∝,r)] = K((∝,r),X̂[KX̂,X̂ +!2
noiseI]↓1Ŷ (24)

where !2
noise is the variance due to noise and I is the identity matrix. Note that in general the IVs, r, can be multi-

dimensional. As an example, consider the case a GP maps a set of force field parameters to the angular RDF of a
liquid. We now have a 2-dimensional space of IVs since the angular RDF gives the atomic density along the radial and
angular dimensions. In the following mathematical development, it is assumed that the QoI is 1-dimensional for sake of
convenience and note that extending the method to higher-dimensional observables just requires redefining the IVs in
accordance with Eq. (24).

The kernel matrix, K, quantifies the relatedness between input parameters and can be selected based on prior knowledge
of the physical system. A standard kernel for physics-based applications is the squared-exponential (or radial basis
function) since the resulting GP is infinitely differentiable, smooth, continuous, and has an analytical Fourier transform
[107]. The squared-exponential kernel function between input points (( m,rm) and (( n,rn) is given by,

Kmn = %2 exp
(
↓ (rm ↓ rn)2

2ω2
r

↓
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2ω2
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)
(25)

where o indexes over dim(( ) and the hyperparameters %2 and ωA are the kernel variance and correlation length scale of
parameter A, respectively. Hyperparameter optimization can be performed by log marginal likelihood maximization,
k-fold cross validation [106] or marginalization with an integrated acquisition function [187], but can be computationally
expensive and is usually avoided if accurate estimates of the hyperparameters can be made from prior knowledge of the
chemical system.
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To train a standard GP surrogate model, N training samples are generated in the input parameter space and a molecular
simulation is performed for each training set sample to calculate N predictions over the number of target QoIs, + . The
training set, X̂, is then a (N+ ↖ dim(( ) + 1) matrix of the following form,

X̂ =





(1,1 (2,1 . . . r1
(1,1 (2,1 . . . r2

...
...

...
...

(1,1 (2,1 . . . r+
(1,2 (2,2 . . . r1

...
...

...
...

(1,N (2,N . . . r+





(26)

where the (i, j are the ith model parameter for sample index j and rk are the IVs of the target QoI. Note that the training
sample index, j = 1, ...,N, is updated in the model parameters only after + rows spanning the domain of the observable,
giving N+ total rows. Therefore, the training set matrix represents all possible combinations of the training parameters
in the ( parameter input space. The training set observations, Ŷ, are a (N+ ↖ 1) column vector of the observable
outputs from the training set,

Ŷ = [S(( 1,r1), ...,S(( 1,r+ ),S(( 2,r1), ...,S(( N ,r+ )]
T (27)

where S(( j,rk) = y(( j,rk)↓µ prior
GP (( j,rk) is the difference between the training set observation of model parameters

( j at IV rk and a GP prior mean function. Of course, the GP prior mean, µ prior
GP , is the same shape as the training set

observations matrix,

µ prior
GP := [µ(( 1,r1), ..., µ(( 1,r+ ), µ(( 2,r1), ..., µ(( N ,r+ )]

T (28)

where µ(( j,rk) is the GP prior mean for parameter set ( j at rk. Note that the selection of a prior mean can impact the
quality of fit of the GP surrogate model and should reflect physically justified prior knowledge of the physical system.

Conceptually, since a Gaussian process is a Bayesian model, the prior serves as a current state of knowledge that can
encode an initial guess for the QoI before the GP sees any training data. The subtraction of the GP prior mean from the
model output effectively shifts the QoI by this pre-specified mean function. Hence, the GP is trained on these mean
shifted observations rather than the observations themselves. Although shifting the data by another function seems like
it shouldn’t change the ability of the GP to estimate the QoI, it actually can have an important impact on the stochastic
properties of the data as a function of the IVs. By construction, GPs are stationary, meaning that the means, variances,
and covariances are assumed to be equal along all QoI. But for complex data, this is often not the case. For example, it
is known that the RDF is zero for small r values and has asymptotic tailing behavior to unity at long-range. The GP
prior mean effectively shifts this non-stationary data and makes it behave as if it were stationary by removing any r
dependencies.

The expectation of the GP for a new set of parameters, S∝(r|( ∝), is then a (+ x 1) column vector calculated with Eq.
(24),

S∝(r|( ∝) = [S∝(r1|( ∝), ...,S∝(r+ |( ∝)]T (29)

where S∝(r|( ∝) is the most probable difference function between the model and GP prior mean. Hence, to obtain a
comparison to the experimental QoI you simply add the GP prior mean at ( ∝, µ∝,prior

GP (r|( ∝), back to S∝(( ∝,r).

The GP expectation calculation is burdened by the inversion of the training-training kernel matrix with O(N3+3) time
complexity and the (+ ↖ N+) ↖ (N+ ↖ N+) ↖ (N+ ↖ 1) matrix product with O(N2+3) time complexity. Note that
these estimates are for naive matrix multiplication. Regardless, the cubic scaling in + dominates the time-complexity
for observables with many QoIs. For example, to build a GP surrogate model for the density of a noble gas (+ = 1) with
Lennard-Jones interactions (dim(( ) = 2) would give a training set matrix of (2N ↖3). Similarly, a surrogate model for
an infrared spectrum of water from 600-4000 cm↓1 at a resolution of 4 cm↓1 (+ = 850) estimated with a 3 point water
model of Lennard-Jones type interactions (dim(( ) = 6) would generate a training set matrix of size (850N ↖ 7). Clearly,
the complexity of the output QoI causes a significant increase in the computational cost of the matrix operations.
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3.3.3 The Local Gaussian Process Surrogate Model

The time-complexity of the training-kernel matrix inversion and the matrix product can be substantially reduced by
fragmenting the full Gaussian process of Eq. (24) into + Gaussian processes. This method is also referred to as the
subset of regressors approximation [188] and is considered a "greedy" approximation [106]. Under this construction, an
individual GPk is trained to map a set of model parameters to an individual QoI,

E[GPk] : ( ′⇓ S(rk) (30)

where r is no longer an input parameter. The training set matrix, X̂⇒, is now a (N ↖ dim(( )) matrix,

X̂⇒ =





(1,1 (2,1 . . .
(1,2 (2,2 . . .

...
...

...
(1,N (2,N . . .



 (31)

while the training set observations, Ŷ⇒k, is a (N ↖ 1) column vector of the QoIs from the training set at rk,

Ŷ⇒
k = [S(( 1,rk), ...,S(( N ,rk)]

T (32)

where S(( j,rk) = y(( j,rk)↓µ prior
LGP,k(rk) and k indexes over IVs. The LGP prior mean µ prior

LGP,k(rk) is now,

µ prior
LGP,k := [µ(( 1,rk), ..., µ(( N ,rk)]

T (33)

such that µ(( j,rk) is the GP prior mean for parameter ( j at rk. The squared-exponential kernel function is now,

Kmn = %2 exp
(
↓

dim(( )

∀
o=1

((o,m ↓(o,n)2

2ω2
(o

)
. (34)

The LGP surrogate model expectation for the observable at rk, at a new set of parameters, ( ∝, is just the expectation of
the kth Gaussian process given the training set data,

S∝loc(rk|( ∝) = E[GPk(( ∝)] = K(∝,X̂⇒ [KX̂⇒,X̂⇒ +!2
noiseI]↓1Ŷ⇒k. (35)

We then just combine the local results from the subset of + GPs to obtain a prediction for the difference between the
model and LGP prior mean,

S∝loc(r|( ∝) = [S∝loc(r1|( ∝), ...,S∝loc(r+ |( ∝)]T . (36)

and subsequently add back the LGP prior mean to obtain the estimated QoI, y∝loc(r|(
∝) = S∝loc(r|(

∝)+ µ prior
LGP,k((

∝,r).

By reducing the dimensionality of the relevant matrices, the time complexity of the matrix calculations are drastically
reduced compared to a standard GP. The single step inversion of the training-training kernel matrix is now of O(N3)
time complexity while the + step (1 ↖ N) ↖ (N ↖ N) ↖ (N ↖ 1) matrix products are reduced to O(N2+) time
complexity. If the number of training samples, N, the number of IVs, + , and the number of model evaluations, G, are
equal between the full and LGP algorithms, then a LGP approximation reduces the evaluation time complexity in a
standard GP from cubic-scaling, +3, to embarrassingly parallelizable linear-scaling, + .

In summary, a local Gaussian process is an approximation in which the QoIs are modeled as independent random
variables, each described by their own Gaussian process. This amounts to assuming that the random variables are
stochastically independent. For time-independent data including scattering measurements and spectroscopy, this
approximation is appropriate since each observation is an independent measurement at each independent variable.
Finally, it is well-established that low rank approximations of Gaussian processes can compromise the accuracy of the
estimated uncertainty, so the use of LGP regressors should be carefully scrutinized based on the risk/consequences of
misrepresenting the resulting functional distributions.
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Complex experimental observables can be reconstructed by this set of LGPs through a series of relatively straightforward
matrix operations with linear time-complexity in the number of IVs. Furthermore, the LGP has all of the primary
advantages of Bayesian methods, including built-in UQ and analytical derivatives and Fourier transforms. In the
following section, we demonstrate the computational enhancement and accuracy of the LGP approach by modeling the
RDF of neon at 42K. The LGP surrogate model is then implemented within a Bayesian framework to exemplify the
power of UQ/P for molecular modeling.

3.4 A Local Gaussian Process Surrogate for the RDF of Liquid Ne

To explore the computational advantages of LGP surrogate models for Bayesian inference, we studied the experimental
RDF of liquid Ne [13] under a () -6) Mie fluid model. The () -6) Mie force field is a flexible Lennard-Jones type
potential with variable repulsive exponent,

vMie
2 (r) =

)
) ↓6

(
)
6

) 6
)↓6

∋
[(

!
r

))
↓
(

!
r

)6]
(37)

where ) is the short-range repulsion exponent, ! is the collision diameter (Å), and ∋ is the dispersion energy (kcal/mol)
[80].

MD simulations were performed from a Sobol sampled set spanning a prior range based on existing force field models
[83, 87, 189] () = [6.1,18], ! = [0.88,3.32], and ∋ = [0,0.136]) to generate a RDF training set matrix of the form
in Eq. 31. Prior parameter ranges were selected so that training samples were restricted to the liquid regime of
the () -6) Mie phase diagram [86, 190]. A sequential sampling approach was used in which we Sobol sample the
prior range of parameters, calculate the training sample with the best-fit to the experimental data (lowest root mean
squared error), center the new space on this training sample, and then narrow the sample range around this center point
by a user selected ratio ∗ . This procedure was repeated three times with 320 samples per round (960 total training
simulations) with ∗ = 0.8. This ratio was selected so that the final range would span >3 standard deviations of the
posterior distributions estimated in prior literature [87, 170]. Subsequently, 320 test simulations were randomly sampled
from the final range and used to determine whether or not the surrogate model provides accurate model predictions. A
visualization of this procedure is provided in the Supporting Information.

The number of observed points + in the radial distribution function was calculated by dividing the reported rmax↓rmin ↗
15.3 by the effective r-space resolution given by, ∆r = ∀/Qmax, where ∆r = 0.21 Åfor reported Qmax = 15 Å↓1. This
relation indicates that the appropriate number of observed independent r-values in the RDF is + = 73.

The training set matrix and training observation matrix were then constructed from the 960 training samples according
to eqs (31) and (32), respectively. As a prior mean, we selected the RDF determined analytically from the dilute limit
potential of mean force (PMF),

µ prior
PMF ,k(( j,rk) := g(( j,rk) = exp


[↓&V (( j,rk)]


(38)

where g(( j,rk) and V (( j,rk) are the analytical dilute limit RDF and () -6) Mie potential for parameters ( j at rk,
respectively. A PMF prior mean yields physically realistic short-range (g(r) = 0) and long-range behavior (g(r)⇓ 1).
The PMF prior had improved RMSE compared to an ideal gas prior (∞r ≃ R+

0 , g(r) = 1), but this difference did
not significantly impact the Bayesian posterior estimate (see Supporting Information). Finally, LGP hyperparameter
optimization was performed using brute force to minimize the LOO error [191] over the training set.

Quantitative analysis of model sensitivity can be performed with probabilistic derivatives of the QoI with respect to
model parameters (see Supporting Information) and subsequently related to temperature derivatives of radial distribution
functions [192].

3.4.1 Computational Efficiency and Accuracy

Now that we have constructed the training set matrix, we simply evaluate the expectation at each rk according to
Eq. (35) and combine the results into a single array as in Eq. (36). The average computational time to invert the
training set matrix and evaluate the surrogate model for both a standard GP and LGP are shown in Table 8. The LGP
surrogate accelerates the RDF evaluation time compared to molecular dynamics by a factor of 1,700,000 for the + = 73
independent variable QoI with 960 training simulations. This 6 orders-of-magnitude speed-up beats a standard GP by 3
orders-of-magnitude (2141x). With respect to the training-training kernel matrix inversion, the LGP wins out on the
standard GP by a factor of 31,565.
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Table 8: Average relative time and speed-up to QoI evaluation and training set matrix inversion for a standard and local
Gaussian process for 960 training samples and a RDF with + = 73 points.

Model QoI Eval. Time (s) Speed Up (t/tsim) Inv. Time (s)
Simulation 1,251 1 -
GP 1.52 822 355
LGP 0.0007 1,760,267 0.01

Figure 17: Visualization of LGP surrogate model testing and validation. (a)-(c) Test set samples over each parameter
plotted against the RMSE between simulated and LGP data. (d) Average RMSE over the 320 test set samples as a
function of r. The dashed line represents the reported error from the experiment.

In summary, the LGP significantly accelerates both computational bottlenecks for Gaussian process surrogate modeling;
namely, the training set matrix inversion and surrogate model evaluation time. Of course, the exact speed-ups depend
on numerous factors including the number of IVs + , the number of training samples used to construct the training set
matrix N, the level of code parallelization, and hyperparameter optimization procedure. Which step is rate limiting
depends on the surrogate modeling application. For instance, if the surrogate model doesn’t need to be evaluated a
large number of times, the training set generation, matrix inversion and hyperparameter optimization will be the rate
limiting steps. On the other hand, applications that require a large number of model evaluations, such as uncertainty
quantification and propagation, result in the surrogate model evaluation time being rate limiting. Typically, designing a
surrogate model is only necessary in the latter case.

Clearly the LGP is fast, but is it accurate? In other words, does the LGP provide QoI predictions that are within a
reasonable level of accuracy to serve as a true surrogate model for the molecular dynamics predictions? To evaluate the
accuracy of the local predictions, a test set of 320 () -6) Mie parameters was randomly sampled from the final range of
the sequential sampling method (see Supporting Information) and the RMSE computed between simulated and LGP
predicted radial distribution functions along all radial positions, r. The results are summarized in Figure 17.

The RMSE for all radial positions is less than 0.03, which is excellent considering that this error is smaller than the
reported experimental uncertainty (⇑0.03). Of course, the acceptable RMSE over the QoI is user-defined and largely
subjective based on the surrogate model application, but can be improved with additional training and hyperparameter
optimization if necessary (an example is included in the Supporting Information).
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Table 9: Summary of () ↓6) Mie potential parameters optimized for Ne. Values for the repulsive exponent parameter
are rounded to the nearest integer.

Force Field QoI ) ! (Å) ∋ (kcal/mol)
Mick (2015) VLE 11 2.794 0.064
SOPR (2022) RDF 11 2.778 0.063
This Work RDF 11 2.773 0.064

3.4.2 Learning from the Ne RDF Surrogate Model with Bayesian Analysis

Our fast and accurate LGP surrogate model now allows us to explore the underlying probability distributions on the
() -6) Mie parameter space. This example is provided to show how one can use Bayesian analysis to learn about
correlations and relationships between model parameters as well as model adequacy. This analysis can provide robust
insight into the nature of the model and provide quantifiable evidence for whether or not the model is appropriate for a
target application. Bayesian inference yields a probability distribution function over the model parameters called the
joint posterior probability distribution. The maximum of the joint posterior, referred to as the maximum a posteriori
(MAP), represents the set of parameters with the highest probability of explaining the given experimental data. In
force field design, the MAP would be an appropriate choice for an optimal set of model parameters. However, the
power of the Bayesian approach lies in the fact that, not only can we identify the optimal parameters, but we can also
examine the probability distribution of the parameters around these optima. For instance, the width of the distribution
provides evidence for how important a parameter in the model is for representing the target data. For a given parameter,
a wide distribution indicates that the parameter has little influence on the model prediction. On the other hand, a narrow
distribution indicates that the parameter is critical to the model prediction. Additionally, the joint posterior may exhibit
multiple peaks, or modes. A multimodal joint posterior suggests that there are multiple sets of model parameters that
reproduce the target data, which may be a symptom of model inadequacy. Finally, the symmetry of the distribution
provides information on relationships and correlations between parameters, providing a framework to diagnose subtle
relationships that may otherwise go unnoticed.

Usually, the joint posterior distribution is a high-dimensional quantity that cannot be visualized directly. However, we
can visualize the joint posterior along one dimension by integrating out the contributions over all other parameters. The
resulting distributions are called marginal distributions. Marginal distributions computed over the () -6) Mie potential
parameters optimized to the RDF of liquid Ne are shown in Figure 18.

For each parameter, the resulting marginal posterior distributions are unimodal and symmetric. This result is not
surprising in the context of recent results that show iterative Boltzmann inversion, which is a maximum likelihood
approach to the structural inverse problem, is convex for Lennard-Jones type fluids [25]. Observing the 2D marginal
distributions in Figure 18, we can also see that each of the parameters are correlated to one other. For example, the
negative correlation between ! and ∋ suggests that increasing the size of the particle should be accompanied by a
decrease in the effective particle attraction. Conceptually this makes sense, if the particles are larger, then they would
need to have a weaker attractive force to give the same atomic structure. This result is consistent with Bayesian analysis
on liquid Ar [170]. The nuisance parameter distribution shows that the unknown standard deviation between the LGP
surrogate model and the experimental data is around 0.016.

One surprising characteristic of the posterior distribution is that it is extremely narrow. Recall that narrow distributions
indicate that the parameters are important, or have tight control, over the model quality-of-fit to the experimental
data. From our Bayesian analysis, we can therefore confidently conclude that detailed interatomic force information is
contained within the experimental RDF. This observation is in stark contrast to over 60 years of prior literature which
has unanimously asserted that only the excluded volume or collision diameter can be ascertained from experimental
scattering data [17, 193, 194]. In fact, the Bayesian analysis shows that it is possible to determine values for ) , ! , and
∋ within ±2, ±0.02 Å, and ±0.0075 kcal/mol with 95% certainty. This result leads to two important conclusions: (1)
Scattering data can effectively constrain the force field model parameter space and (2) the data must be sufficiently
accurate to do so. These results provide evidence that scattering data could be invaluable to inform accurate force fields,
particularly for structure and self-assembly applications.

The joint posterior can also be used for model parameter selection given the experimental observation. Specifically, the
optimal parameters are given by the MAP, corresponding to the maximum of the joint posterior distribution. The MAP
is presented in Table 9 along with two other existing force fields for liquid Ne.

The estimated Mie parameters are in agreement with the Mick [87] and structure optimized potential refinement (SOPR)
[189] models. This result confirms that the radial distribution function contains sufficient information to determine
transferable force field parameters in simple liquids.
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Figure 18: (Diagonal) 1D marginal distributions for the () -6) Mie fluid parameters. Prior distributions are not depicted
since they are flat lines near 0 probability. Yellow vertical lines represent the maximum a posterior (MAP) estimate.
(Off-Diagonal) 2D marginal histograms showing parameter correlations.
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Some interesting questions arise considering that both the Mie fluid model and SOPR, which is a probabilistic iterative
Boltzmann method for experimental scattering data, give similar predictions for the structure-optimized potentials. The
key difference between the Bayesian optimization performed in this work and SOPR is that the former is parametric
while the latter is non-parametric, both of which have strengths and weaknesses. Specifically, parametric models are
less complex but may not be flexible enough to describe subtle details of the experimental observation. On the other
hand, non-parametric models can describe nuanced experiments but may over-fit to non-physical features of the data. It
is then natural to wonder: Is a () -6) Mie model adequate to describe the experimental scattering data? Or does the
scattering data complexity necessitate the use of non-parametric iterative potential refinement techniques like SOPR?

We can investigate the first question of model adequacy by propagating parameter uncertainty through the LGP to
construct a distribution of RDF predictions - referred to as the posterior predictive. The posterior predictive can be
estimated by evaluating the LGP for all MCMC samples and computing the mean,

E[S∝loc(rk)] ↗
1
N

N

∀
i=1

S∝loc(rk|( i) (39)

and variance,

V[S∝loc(rk)] ↗
1
N

N

∀
i=1

(S∝loc(rk|( i)↓E[S∝loc(rk)])
2 (40)

of the resulting QoI predictions. Recall that the nuisance parameter distribution is also sampled to account for unknown
uncertainties in the LGP surrogate model and experimental data. The posterior predictive therefore quantifies of
how accurately we know the QoI given experimental, model, and parametric uncertainty estimated with Bayesian
inference. If the model is adequate, the Bayesian credibility interval (µ ±2! ) should contain approximately 95% of the
experimental data. The posterior predictive and residuals (gexp(r)↓µ(r)) estimated for the liquid Ne RDF are shown
in Figure 19.

Clearly, the agreement between the posterior predictive mean and the experimental data is excellent. However, the
residuals often lie outside of the 2!post credibility interval. These differences between the experiment and model could
be explained by a number of different factors, including errors arising from Fourier transform truncation, background
scattering corrections or model inadequacy, among others. However, without rigorous uncertainty quantification on the
experimental scattering data, it is currently not possible to determine which factor or combination of factors results
in the model disagreement. We argue that this knowledge gap necessitates rigorous UQ/P studies on scattering data
as well as iterative potential refinement methods. Combining these approaches with Bayesian inference on molecular
dynamics models could then shed light on what physical interactions can be learned from scattering experiments.

In summary, we have shown that a LGP surrogate model enables rapid and accurate uncertainty quantification and
propagation with Bayesian inference. We then showed how the posterior distribution is an indispensable tool to learn
subtle relationships between model parameters, identify how important each model parameter is to describe the outcome
of experiments, and quantify our degree of belief that our model adequately describes our observations. The power of
Bayesian inference is evident.

3.5 Conclusions

We have shown that local Gaussian process surrogate models trained on an experimental RDF of liquid neon improves
the computational speed of QoI prediction 1,760,000-fold with exceptional accuracy from only 960 training simulations.
The 3 orders-of-magnitude evaluation time speed-up for a local versus standard Gaussian process was shown to accelerate
Bayesian inference without the need for advanced sampling techniques such as on-the-fly learning. Furthermore, since
the LGP linearly scales with the number of output QoIs, significantly higher speed-ups are expected for more complex
data, such as infrared spectra or high resolution scattering experiments, or for multiple data sources simultaneously (e.g.
scattering, spectra, density, diffusivity, etc). We conclude that local Gaussian processes are an accurate and reliable
surrogate modeling approach that can accelerate Bayesian analysis of molecular models over a broad array of complex
experimental data.
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Figure 19: Posterior predictive plots for the radial distribution function. (a) RDF mean and credibility interval propagated
from the parameter uncertainty quantified with Bayesian inference. (b) Residual analysis comparing the experimental
data with the posterior predictive distribution.
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Table 10: Estimated boundaries for physics-constrained prior space based on the () - 6) Mie fluid phase diagram. m = 6
is the attractive tail exponent of the () - 6) Mie potential. ∝) The maximum ) was selected to be substantially larger
than previously reported values.

Param. Min. Min. Criteria Max. Max. Criteria
) 6.1 m = 6 =∈ ) > 6 18 Literature∝
! 2.55 Vapor-Liquid Equil. 3.32 Solid-Liquid Equil.
∋ 0.00 ∋ < 0 undefined 0.136 Vapor-Solid Equil.

Figure 20: 2D training and sample parameter set used to train and test the LGP surrogate model.

3.6 Supporting Information

3.6.1 Molecular Dynamics Simulation of Mie Fluids

Computer generated radial distribution functions (RDFs) were calculated using molecular dynamics (MD) simulations in
the HOOMD-Blue package [108]. Simulations were initiated with a lattice configuration of 864 particles and compressed
to a reduced density of # = 0.02477 atom/Å3 and thermal energy T = 42.2 K. The HOOMD NVT integrator was used
for a 0.25 nanosecond equilibration step and a 0.25 nanosecond production step (dt = 0.5 femtosecond). Potentials were
truncated at 3! with an analytical tail correction, and RDFs were calculated using the Freud package [195].

3.6.2 Training and Test Set Generation

The first step to design a LGP surrogate model is to generate a training set of model input parameter input and QoI
outputs. To generate the training set, we need dense samples of model parameters in the region of the parameter space
that well-represents the target experimental data. In general, it is not known a priori where this region is, particularly if
there is no prior knowledge of what model parameters are best with respect to an experimental observation, y. However,
there are parameter regions that we can exclude a priori based on the physics of the () -6) Mie fluid. For instance, Ne is
a liquid at the experimental thermodynamic conditions, so we can use well-established () -6) Mie fluid phase diagrams
and vapor-liquid transitions [86] to restrict the parameter ranges to the liquid phase only. Specifically, given a fixed
temperature (T = 42.2K) and density (# = 0.024 Å↓3), it is trivial to determine the ! and ∋ parameter ranges reported in
the manuscript via relations for the scaled temperature (T ∝ = kbT /∋) and scaled density (#∝ = #!3). The parameter
ranges determined using the Mie fluid phase diagram are presented in Table 10. Restricting the parameter to physically
justified ranges is important to avoid a "garbage in, garbage out" scenario for an LGP surrogate model. Given this
prior range, we then performed the sequential sampling approach outlined in the manuscript. A visualization of this
procedure is shown in Figure 20.

The Gaussian Process Prior Mean

In this manuscript, an analytical solution for the RDF based on the dilute limit potential of mean force (PMF) was
used as the GP prior mean. This choice is appropriate as an RDF prior since it will have the same features that we
expect a liquid RDF to have, i.e. RDF values of zero at low r and a long-range tail that asymptotically approaches unity.
However, note that even a prior guess that doesn’t encode this information can still produce accurate LGP surrogate
models for RDFs. For example, in Figure 21 we can see that an ideal gas RDF prior, which amounts to approximating
that the RDF is unity everywhere (gIG(r) = 1), can still be learned by the local Gaussian processes with RMSE values
close to the more physically justified PMF.
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Figure 21: RMSE as a function of r for an ideal gas (blue) and potential of mean force (red) prior.

Clearly, the RMSE along r is a similar magnitude for the ideal gas and PMF prior, but the r-dependent behavior is
noticeably different. For the ideal gas prior, we see that there is high RMSE at low r, which is inconsistent with our
intuition for a liquid RDF due to the excluded volume of atoms. What is occurring here is that the GP estimate is
being "pulled" towards the prior at low r. On the other hand, the PMF prior exhibits behavior in line with our physical
intuition; namely, near zero error at r values smaller than the relative diameter of the atom. Perhaps surprisingly, we see
in Figure 22 that the choice of prior mean doesn’t have a large impact on the posterior distribution or MAP estimates.
We attribute this to the fact that the RMSE is sufficiently small for both the ideal gas and PMF priors that the posterior
distribution isn’t significantly modified. However, it does influence the posterior predictive distribution as evidenced by
Figure 23. Specifically, note that there is uncertainty at low r for the ideal gas prior, whereas this uncertainty vanishes
for the PMF prior.

Hyperparameter Selection

The final step is to learn a set of LGP hyperparameters that provide accurate estimates of the target QoI. A standard
approach to selecting hyperparameters is to maximize the model evidence [106] or apply an expected improvement
criterion based on an integrated acquisition function [187]. Here we applied a brute force search based on minimizing
the leave-one-out (LOO) error for 25,000 hyperparameter options randomly sampled over a prior range using the method
of Sundararajan and coworkers [191] (Table 11). This method gives relatively similar hyperparameter estimations for
both an ideal gas and PMF GP prior. The prior range was selected based on the () -6) Mie parameter sensitivity analysis
of Mick and coworkers [87].

A limitation of the brute force approach to hyperparameter selection is that we don’t account for potential hyperparameter
uncertainty in the LGP prediction. However, the self-consistency of our predictions with existing literature on liquid neon
[87, 189] suggests that this uncertainty is likely insignificant. Note that one could propagate hyperparameter uncertainty
by performing Bayesian optimization over the hyperparameters, sampling the resultant hyperparameter posterior
distribution, and propagating the samples through the posterior predictive estimation step. Finally, hyperparameter
optimization for the LGP model is non-trivial since the LGP is an approximation to a non-stationary stochastic process
[196].
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Figure 22: Marginal posteriors for the ideal gas PMF (red) and ideal gas (blue) priors.

Figure 23: Posterior predictives for the ideal gas PMF (red) priors ideal gas (blue) priors.
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Table 11: Optimum hyperparameter values under the ideal gas and PMF prior computed from 25000 random samples
over the reported test range.

Name Test Range Ideal Gas PMF
ω) 0.5-4 3.31 3.58
ω! 0.01-0.05 0.046 0.048
ω∋ 0.001-0.01 0.0098 0.0093
% 1E-4-0.1 0.094 0.095

!noise 1E-4-0.01 7.2E-4 8.3E-4

Figure 24: RMSE along r for varying numbers of training simulations under an ideal gas prior.

What if the previously described method fails to yield an accurate surrogate model? In this case, one can repeat the
sequential sampling by adding more training simulations at each range to retrain the LGP until the RMSE is sufficiently
small. As an example, Figure 24 demonstrates that surrogate model accuracy improves as more samples are added at
each range. Note that the accuracy of the surrogate will not improve beyond the statistical uncertainty of the underlying
model.

A more rigorous, but non-trivial method for surrogate model training, is to use adaptive or on-the-fly learning, in which
the uncertainty in the LGP prediction is used to decide whether or not a new simulation is needed in the training set.
This approach has been used in prior work[170, 197] but was found to be unnecessary for our purposes due to the
efficiency and accuracy of the LGP with relatively few training samples.

3.6.3 Using the LGP Surrogate Model for Parameter Sensitivity Analysis

Sensitivity of a QOI to a model parameter, (i, can be quantified using the analytical derivative of the local GP surrogate
model according to the following equation,

,E[GPk(( ∝)]
,(i

=

(
(i ↓( ∝

i
ω2

(i

)
K(∝,X̂⇒ [KX̂⇒,X̂⇒ +!2

noiseI]↓1Ŷ⇒k (41)

where k is the QoI index. The Gaussian process derivative is a quantitative measure of the influence of a perturbation in
(i to the expectation of the observable Ŷ⇒k. Therefore, Eq. (41) can approximate the impact of changing a molecular
simulation parameter on the QOI (e.g. how much does changing the effective particle size impact the RDF at any r).
Figure 25 shows probabilistic local GP derivatives calculated for the () -6) Mie parameters.
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Figure 25: Derivatives of the local GP along the RDF calculated from Eq. (41).
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The repulsive exponent derivative exhibits a small magnitude and has a minimum at the RDF half maximum. This
behavior suggests that increasing the repulsive exponent, which determines the "hardness" of the particles, steepens
the slope of the first peak in the RDF. This result is intuitive considering that in a hard-particle model there is a
discontinuous jump at the hard-particle radius (infinite slope) that progressively softens with the introduction of an
exponential repulsive decay function. In the case of the collision diameter, zeros of the derivative occur at RDF peaks
and troughs, while local extrema align with the half-maximum positions. Consequently, increasing the effective particle
size shifts the RDF to the right while maintaining relatively constant peak heights. Regarding the dispersion energy,
its derivative displays zeros at the half-maximum positions of the RDF and local extrema at peaks and troughs. This
behavior indicates that an increase in the dispersion energy leads to an increased magnitude of the RDF peaks and
greater liquid structuring.

Derivatives of structure with respect to thermodynamic state variables (T , P, µ , etc) can be computed with fluctuation
theory. Let’s now take as an example the ∋-derivative of the RDF in Ne. We find that an increase in the dispersion
energy deepens the interatomic potential well, resulting in greater attraction and a more structured liquid. Noting that
the reduced temperature, T ∝, is inversely related to ∋ by,

T ∝ =
kBT

∋
(42)

then the g(r) derivative with respect to ∋ at constant T , is equal to the g(r) derivative with respect to the reduced
thermodynamic beta,

,g(r)
,∋

=
,g(r)
,& ∝ (43)

where & ∝ = T ∝/kBT . In summary, an increase in ∋ is equivalent to a decrease in temperature. It is therefore expected
that the ∋ derivative and temperature derivative behave the same; specifically, a decrease in temperature should increase
result in greater fluid structuring without significantly impacting peak positions. Unsurprisingly, this behavior is
exactly what was observed in recent work that computed temperature derivatives of the O-O pair RDF in water using a
fluctuation theory approach [192].

3.6.4 The Standard Bayesian Framework

For simplicity of notation, let ( = {) ,! ,∋ ,!n} represent the model parameters and Y = Sd(Q) be the RDF observations.
The nuisance parameter, !n, represents the width of the Gaussian likelihood and is considered a model parameter
since nothing is known about this parameter a priori. Calculating the posterior probability distribution with Bayesian
inference then requires two components: (1) prescription of prior distributions on the model parameters, p(( ), and (2)
evaluation of the RDF likelihood, p(Y |( ). The prior distribution over the () ↓6) Mie parameters is assumed to be a
multivariate normal distribution,

( ⇑ N (µ( ,!2
( ) (44)

where µ( and !2
( are the prior mean and variance of each () ↓6) Mie parameter in ( , respectively. A wide, multivariate

normal distribution was selected because it is non-informative and conjugate to the Gaussian likelihood equation. The
prior on the nuisance parameter is assumed to be log-normal,

log!n ⇑ N (µ!n ,!2
!n) (45)

where µ!n and !!n are the prior mean and variance of the nuisance parameter. The log-normal prior imposes the
constraint that the nuisance parameter is non-negative, which is obviously true because a negative variance in the
observed data is undefined. For reference, the prior parameters used in this study are summarized in Table 12.

Table 12: Prior parameters on the () -6) Mie model parameters.

Parameter Distribution µ s
) 12.0 9
! Normal 2.7 1.8
∋ 0.112 0.225

!n Log-Normal 1 1
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The likelihood function is assumed to be Gaussian according to the central limit theorem,

p(Y |( ) # 1
!nsamples

n
exp

[
↓ 1

2!2
n
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[S(i(Q j)↓Sd(Q j)]

2
]

(46)

where S( (Qi) is the molecular simulation predicted RDF and j indexes over discrete points along the momentum vector.
Bayes’ theorem is then expressed as,

p(( |Y ) # p(Y |( )p(( ) (47)

where equivalence holds up to proportionality. This construction is acceptable since the resulting posterior distribution
can be normalized post hoc to find a valid probability distribution.

3.6.5 Markov Chain Monte Carlo

To populate the Bayesian likelihood distribution, Markov Chain Monte Carlo (MCMC) samples over the model
parameters ( = {) ,! ,∋ ,!n} are passed to the surrogate model, evaluated, and compared to the experimental RDF.
960,000 MCMC samples were calculated using the emcee package [198] from 160 walkers (5000 samples/walker) with
a 1000 sample burn-in per walker. The MCMC moves applied were differential evolution (DE) at a 0.8 ratio and DE
Snooker at a 0.2 ratio, which is known to give good results for multimodal distributions. The acceptance ratio obtained
from this sampling procedure was ⇑0.27 and the autocorrelation between steps was 16 moves.

3.6.6 Python Notebook Tutorial

An example code for creating a local Gaussian process surrogate model in python was created and posted on GitHub
here. The notebook is reproduced as a pdf below and contains a detailed description of the code functions, basic theory,
and results of the method. The example is for liquid neon for the same reasons as the tutorial written for the first
chapter. The notebook covers how to construct a training dataset, design a kernel, include a Gaussian process prior
mean, code the Gaussian process surrogate model, perform hyperparameter optimization, and validate the model with a
root-mean-square-error test.

4 Impact of Experiment Uncertainty on Potential Estimation

In the previous chapters, it has been shown that non-parameteric (Chapter 2) and parametric (Chapter 3) approaches can
be used to learn uncertainty-aware force field parameters from liquid structure. However, one key question that still
remains is whether or not experimental uncertainty significantly impacts the forces estimated from these approaches.
Historically, giants in the field of liquid state theory including Levesque and Verlet [199] noted that systematic error in
scattering data can drastically effect the force parameters that best represent a given scattering measurement, while
Weeks, Chandler and Anderson concluded that the repulsive part of the interatomic forces was the key to matching
structure factors in simple liquids [200]. However, a notable gap in the literature is the rigorous investigation of random
noise in structure factor data and whether this uncertainty can hinder our ability to reconstruct local interatomic forces.
Here we revisited the important question of experimental noise on force parameter reconstruction using the tools of
Bayesian inference. The theme of the work is to see whether or not noise in experimental data can overwhelm our
ability to reconstruct forces and identify how accurate the scattering data needs to be to prevent such pathological
cases. Updated versions of this work can be accessed on arXiv with article identifier 2407.04839 here here [201] or as a
published article at J. Phys. Chem. Lett. 2024, 15, 51, 12608–12618 [202].

4.1 Abstract

The inverse problem of statistical mechanics is an unsolved, century-old challenge to learn classical pair potentials
directly from experimental scattering data. This problem was extensively investigated in the 20th century but was
eventually eclipsed by standard methods of benchmarking pair potentials to macroscopic thermodynamic data. However,
it is becoming increasingly clear that existing force field models fail to reliably reproduce fluid structures even in
simple liquids, which can result in reduced transferability and substantial misrepresentations of thermophysical behavior
and self-assembly. In this study, we revisited the structure inverse problem for a classical Mie fluid to determine
to what extent experimental uncertainty in neutron scattering data influences the ability to recover classical pair
potentials. Bayesian uncertainty quantification was used to show that structure factors with noise smaller than 0.005
barnes/steradian to ⇑ 30 Å↓1 are required to accurately recover pair potentials from neutron scattering. Notably, modern
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neutron instruments can achieve this precision to extract classical force models to within approximately ± 1.3 for the
repulsive exponent, ± 0.068 Åfor atomic size, and 0.024 kcal/mol in the potential well-depth with 95% confidence.
Our results suggest the exciting possibility of improving molecular simulation accuracy through the incorporation of
neutron scattering data, advancement in structural modeling, and extraction of model-independent measurements of
local atomic forces in real fluids.

4.2 Introduction

Reconstructing interatomic potentials from experimental scattering data is a historic inverse problem in statistical
mechanics, motivated by the idea that complete knowledge of the effective interatomic potential with the atomic
correlation functions allows for all thermodynamic properties of a classical liquid to be calculated [203]. While it
has become widely accepted that liquid state systems exhibit significant many-body and quantum mechanical (both
electronic and nuclear) interactions [17] that influence molecular dynamics, the fact that empirical molecular simulations
remain the gold-standard for efficient and accurate liquid state materials modeling has maintained the significance and
impact of the inverse problem in contemporary physics. However, despite over a century of research, with seminal works
by Ornstein and Zernike [16, 56, 57], Yvon, Born, and Green [204], Schommer [28], and Lyubartsev and Laaksonen
[66], there is surprisingly little to no evidence that these techniques can reliably extract force field parameters from
experimental scattering data [75]. Furthermore, there is growing evidence that existing force fields provide inaccurate
representations of fluid structure when compared to experimental estimates [33, 55]. With the advent of state-of-the-art
diffractometers and the rise of machine learning and high-performance computing for robust uncertainty quantification,
it is relevant to revisit and contextualize prior and current work to better understand how to resolve this longstanding
challenge.

Serious attempts at determining the interatomic potential from experimental scattering data began in the 1950’s.
Henshaw (1958) [205] and later Clayton and Heaton (1961) [193] speculated that the ratio between the atomic collision
radius and first solvation shell radius was related to the approximate width of the interatomic potential bowl. While this
concept cannot directly extract the interatomic potential from the radial distribution function, it was used to conclude
that argon and krypton could be reasonably represented by a (12-6) Lennard-Jones potential. Weeks, Chandler, and
Anderson then introduced a separation of the pair potential into repulsive and attractive parts, in which they concluded
that the repulsive part alone produces structure factors nearly identical to the repulsive and attractive parts taken
together [200]. Henderson (1974) then proved that for a pairwise additive and homogeneous system with equal radial
distribution functions that the effective interatomic potential was unique up to an additive constant [22], which was later
implemented numerically by Schommers (1983) [28] to study liquid gallium. Around the same time, Levesque (1985)
[18] proposed a modified hypernetted chain closure to the Ornstein-Zernike integral relation to calculate interatomic
potentials for liquid aluminum with fast convergence. Both studies were highly influential in the study of liquid metals,
but offered little in resolving the inverse problem in general since interatomic potentials derived from these methods
were only shown to accurately reproduce the diffusion coefficient and not other thermodynamic properties.

The most recent inverse methods applied to experimental data are Soper’s (1996) [31] empirical potential structure
refinement (EPSR) and Lyabartsuv and Laaksonen’s (1995) [66–68] inverse Monte Carlo (IMC). EPSR is an iterative
potential refinement method that is primarily used to determine real-space structures consistent with reciprocal space
scattering data in fluid and glass systems. However, Soper’s work on liquid water revealed that EPSR could not be
reliably implemented to determine pair interaction potentials for molecular simulation applications [34]. On the other
hand, IMC methods have been widely adopted for coarse-graining, in which the number of degrees-of-freedom of a
molecular model are reduced by mapping atomic coordinates to "beads" of atom clusters. While both methods have
attracted significant research interest in recent years, with the creation of an improved EPSR software package [73] and
applications of IMC in complex biological systems [206] such as DNA [207] and nucleosomes [208], the extraction of
reliable and transferable interatomic potentials from experimental scattering data remains widely under-reported and
unresolved, even for simple fluids such as noble gases.

We recently proposed structure-optimized potential refinement (SOPR) [189] as an alternative approach to extract
pair potentials from scattering data (2022). SOPR is a probabilistic iterative Boltzmann inversion (IBI) algorithm
that uses Gaussian process regression to address challenges such as numerical instability and over-fitting to uncertain
experimental data. SOPR derived potentials have demonstrated remarkable accuracy in predicting both the structural
correlation functions and vapor-liquid equilibria of noble gases. Furthermore, the short-range repulsive decay rate
determined with SOPR coincides with predictions from an independently optimized () ↓6) Mie force field for vapor-
liquid equilibria [87]. This finding represents the most complete example of the inverse problem in real systems and
highlights the potential of scattering data in studying macroscopic thermophysical properties of liquids.

The transferability of SOPR potentials raises intriguing questions regarding what factors are most important to accurately
extract local forces from scattering data. One possible explanation is that the reliability of structure inversion techniques
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hinges on the quality of the experimental scattering data [36]. Levesque and Verlet (1968) speculated that experimental
scattering error of < 1% was required to determine the interaction potential within an error of 10% [199], but ultimately
concluded that it is not possible to obtain quantitative information on the potential from scattering data due to systematic
error in the experiments. However, it is currently unclear to what extent these previous attempts have been impeded by
experimental uncertainty. The reason for this knowledge gap is that rigorous uncertainty quantification and propagation
(UQ/P) is computationally demanding and requires the use of machine learning surrogate models and advanced sampling
methods [170, 209, 210] that were not available to liquid state theorists when these questions were first investigated. To
test the hypothesis that neutron instrument accuracy is essential in force field extraction therefore lies at the crossroads
of theoretical statistical physics, machine learning, and high-performance computing.

Here we assess how scattering measurement uncertainty impacts our ability to learn interatomic forces using a dataset of
in silico experimental structure factors with varying levels of noise. Bayesian optimization with a local Gaussian process
(LGP) surrogate model was then applied to extract the underlying probability distributions on the force field parameters.
Gaussian noise was introduced to a reduced Mie model structure factor with standard deviation ∃S, corresponding to
data collected on various neutron instruments from 1973-2022. Constant noise at six different standard deviations,
consistent with a reactor source neutron instrument [3], spanning from low to high uncertainty was added to a model
structure factor (Figure 26).
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Figure 26: Static structure factors (colored lines) with introduced uncertainty (dotted black lines) for uniformly
distributed noise. Measurement standard deviations ∃S are labeled to the left of the structure factor.

By studying the parameter posterior distributions as a function of introduced uncertainty, we aimed to challenge the
assertion that structure factors are insensitive to the detailed form of interatomic interactions [194]. Using the () -6)
Mie parameter Bayesian posterior distributions, we quantify how interatomic interactions such as short-range repulsion,
excluded volume, and dispersion energy affect measured structure factors, shedding light on the intricate relationship
between pair potentials and structural features. Surprisingly, we find that the conclusions from prior literature stating
that details of the interatomic interaction could not be extracted from experimental structure factors were likely justified
given the data quality available at the time, but that modern neutron instruments exceed a precision threshold where
this conclusion could be overturned. These findings suggest that experimental inverse techniques were prematurely
abandoned and should be revisited.

According to our results, neutron scattering measurements determined within a standard deviation of 0.005
barnes/steradian to a Qmax ⇑ 30 Å↓1 are sufficient for force parameter recovery. Fortunately, this level of preci-
sion is already available at modern diffractometers, such as the Nanoscale Ordered MAterials Diffractometer (NOMAD)
[8] or at other modern instruments for sufficiently long run times. Method advancements in structure inversion, along
with the improvement of neutron facilities and measurement accuracy, may therefore be the key to unlock a wealth of
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opportunities for improving molecular models, characterizing local atomic forces, and understanding the dynamics of
atoms and molecules in relation to complex and emergent physical phenomena.

4.3 Computational Methods

In this study, we aimed to model how uncertainty propagates from neutron scattering data to the estimation of force
field parameters. The impact of measurement uncertainty was isolated by constraining the Bayesian analysis to a
classical model fluid. While real physical systems behave quantum mechanically and are inherently many-body in
nature, classical pairwise additive model fluids continue to be studied due their low computational cost and accurate
predictions of complex thermodynamic properties. Furthermore, our prior work has shown that SOPR potentials exhibit
potential corrections consistent with quantum mechanical calculations [189], suggesting that effective pair interactions
could be found that capture many-body and quantum mechanical contributions.

The () -6) Mie fluid model was selected since it is a flexible and widely successful classical model with numerous
existing and developing applications for materials modeling. The pairwise, non-bonded potential energy term of the
() -6) Mie fluid is,
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where ) is the short-range repulsion exponent, ! is the collision diameter (distance), and ∋ is the dispersion energy (en-
ergy) [80]. The () -6) Mie fluid is a flexible model potential that has been shown to accurately reproduce thermodynamic
properties in real fluids [87, 116].

4.3.1 Modeling Neutron Measurement Uncertainty in a Mie Fluid Model

To model experimental uncertainty, a set of Mie fluids was simulated with sufficient sampling statistics to calculate a
highly-accurate static structure factor (∃S(Q) < 0.001) to Qmax =⇑ 30 Å↓1). Computer generated atomic trajectories
were calculated in HOOMD-Blue [108]. MD simulations were initiated with a random configuration of 500 particles
at reduced density #∝ = 0.1 and reduced temperature T ∝ = 1 and equilibrated with Langevin dynamics for 1↖105

timesteps (dt = 10 femtoseconds). Potentials were truncated at 3! with an analytical tail correction, and radial
distribution functions were calculated with Freud [195]. Static structure factors are calculated via radial Fourier
transform of the radial distribution function.

Experimental measurements of structure factors are subject to uncertainty arising from various factors, including
experimental, model, and numerical sources. Uncertainties in neutron flux, energy, time-of-flight, minimum and
maximum momentum transfer (Qmin, Qmax), and data collection time contribute to uncertainty in neutron counting
statistics and the effective resolution of the instrument. Post-processing corrections for inelastic, incoherent, multiple,
and low momentum transfer scattering further contribute to uncertainty in the structure factor form [4]. These effects
result in variations in the neutron intensity that are not necessarily normally distributed [211]; however, errors from
neutron detection are normal due to the limiting behavior of the Poisson distribution for large number of counts [212].
For reactor source instruments, the variance due to these random errors remains approximately constant to a limited
Q-max (10-20 Å↓1), while for spallation sources, the variance increases proportionally to the square of the momentum
transfer to a higher Q-max of 50-125 Å↓1 [8]. Currently, the extent to which this uncertainty influences the accuracy
and reliability of force field reconstructions remains unknown.

Uncertainty quantification was performed for reactor type neutron instruments by adding constant noise to the true
structure factor signal with variations approximately equal to the values indicated in Figure 26. Bayesian analysis
was performed for 16 in silico experimental conditions over a 4↖4 equal spaced grid with ! = [1.85,1.89,1.93,1.97],
∋ = [0.86,0.80,0.74,0.70] and fixed ) = 12. Since spallation type neutron instruments have a Q2-dependent random
error, UQ on the constant error can be interpreted as an upper bound for spallation instruments. Uncertainty levels
were selected based on published data of structure factors measured on neutron instruments from the early 1970’s
to 2022. Notably, a classic argon data set collected on Omega West (1973) [2] is well approximated by constant
noise with variations in S(Q) of approximately ∃S = 0.05, as noted in Figure 26. Similarly, krypton data collected
on D4B (1993)[102] is approximated by the constant ∃S = 0.025 case, while modern instruments such as NOMAD
and NIMROD (>2010) exhibit uncertainty distributions similar to the ∃S = 0.005↓ 0.01 cases depending on the
data collection time [8, 213]. Two low uncertainty extremes were chosen beyond these reported values to identify
measurement precision thresholds and model trends in the predictability of force parameters. Finally, to reduce the
possibility of over-fitting to a single randomly generated structure factor, we used four structure factor replicates
with twice the uncertainty of the reported value. This approach is consistent with the well-known relation that the
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standard deviation in the neutron counts is approximately proportional to the square-root of the number of counts [212].
Assuming that neutron count is directly proportional to time, four measurements of twice the standard deviation would
be approximately equivalent to one measurement with half the standard deviation.

4.3.2 Bayesian Uncertainty Quantification for Force Field Reconstruction

According to the Henderson inverse theorem, it is theoretically possible to uniquely recover the underlying potential in
a pairwise additive, homogeneous fluid [22]. In the context of Bayesian optimization, Henderson’s theorem requires
that there should be a global maximum in the posterior probability distribution at the unique force parameters. However,
as the uncertainty in the structure factor signal increases, deviations from this unique potential are expected, causing the
probability distributions to broaden. This broadening indicates a decrease in confidence in the estimation of the model
parameters. In other words, as structural uncertainty increases, our ability to accurately predict the potential energy
decreases, leading to a wider range of possible parameter values to explain the data.

Bayesian inference was implemented to calculate parameter probability distributions as a function of structure factor
uncertainty. For simplicity of notation, let ( = {) ,! ,∋ ,!n} represent the model parameters and Y = Sd(Q) be the
structure factor observations. The nuisance parameter, !n, represents the width of the Gaussian likelihood and captures
uncertainty from the experimental data and Gaussian process model, which is not known a priori. Calculating the
posterior probability distribution with Bayesian inference then requires two components: (1) prescription of prior
distributions on the model parameters, p(( ), and (2) evaluation of the structure factor likelihood, p(Y |( ). The prior
distribution over the () ↓6) Mie parameters is assumed to be a multivariate log-normal distribution,

( ↓ ∗( ⇑ logN (µ( + ∗( ,!2
( ) (49)

where µ( and !2
( are the prior mean and variance of each parameter in ( and ∗( ≃ R is a real-valued parameter shift that

enforces a lower bound. A wide, shifted multivariate log-normal distribution was selected because it is non-informative
and imposes non-negativity constraints on the model parameters. Specifically, ) ↓6 (defined by the Mie type fluid), ! ,
∋ , and !n must be positive. For reference, the prior parameters used in this study and sample range is summarized in
Table 13. Wide and flat prior distributions were selected to stress the assessment of the uncertainty contributions from
the introduced structure factor noise.

The likelihood function is a Poisson distribution of the neutron counts, but we can approximate this distribution as a
Gaussian because a Poisson distribution approaches a Gaussian distribution in the high count limit,
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where S( (Qi) is the molecular simulation predicted structure factor, + is the number of observed points in the structure
factor, and j indexes over these points along the momentum vector. Bayes’ theorem is then expressed as,

p(( |Y ) # p(Y |( )p(( ) (51)

where equivalence holds up to proportionality. This construction is acceptable since the resulting posterior distribution
can be normalized post hoc to find a valid probability distribution. For further details see the following excellent reviews
of Bayesian inference [38, 42].

The Bayesian likelihood distribution is estimated using Markov Chain Monte Carlo (MCMC) samples over the model
parameters ( = {) ,! ,∋ ,!n}. Computationally, a sample of the model parameters is drawn from a Metropolis-Hastings
type algorithm, passed to the surrogate model, evaluated, and compared to the in silico structure factor. MCMC samples
were calculated using the emcee package [198] from 160 walkers with dynamic burn-in and sample time based on the
autocorrelation convergence criterion used in the emcee package and default stretch move with dynamic tuning.

Table 13: Prior parameters on the () -6) Mie model parameters.

Parameter µ !(std.) ∗(
) 3 1 6
! 2 1 0
∋ 0.7 1 0

!n 0.1 3 0
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4.3.3 Local Gaussian Process Surrogate Models for Structure Factors

The process of populating the posterior distribution function necessitates the evaluation of likelihood for each condition
of interest within the model parameter space, which, in turn, requires conducting an infeasible number of molecular
dynamics simulations. The computational burden associated with this procedure renders the Bayesian framework
impractical even for a relatively small number of samples. To illustrate this, consider the task of obtaining a collision
diameter posterior distribution with a grid resolution of approximately 2% across a wide prior range of m! (ranging
from 0.5 to 1.5). Achieving such resolution for just the m! parameter alone would demand a minimum of 50 samples.
If the same level of resolution is desired for the remaining two parameters, a staggering 125,000 molecular simulations
are required to comprehensively quantify the posterior distribution space. Clearly, there is a substantial computational
challenge involved in obtaining accurate and comprehensive posterior distributions within the Bayesian framework.

To expedite the evaluation of the Bayesian likelihood, a local Gaussian process (LGP) surrogate model was trained
to generate structure factors based on a training set of 960 randomly sampled () -6) Mie parameters in a prior range
specified in Table 14 [210]. This range of parameters was selected to correspond with the liquid phase region of the
Mie phase diagram and avoid pathological simulations that can occur near phase transitions. Note that this range will
change based on the arbitrary choice of temperature and density for the Mie fluid simulation; but, since the reduced
phase diagram is simply scaled from these values, the molecular dynamics simulation will have the same dynamics,
average thermodynamic properties and structure.

Table 14: Estimated boundaries for physics-constrained prior space based on the () - 6) Mie fluid phase diagram. m = 6
is the attractive tail exponent of the () - 6) Mie potential. ∝) The maximum ) was selected to be substantially larger
than previously reported values [83, 87, 189].

Param. Min. Min. Criteria Max. Max. Criteria
) 6.1 m = 6 =∈ ) > 6 18 Literature∝
! 1.5 Vapor-Liquid Equil. 2 Solid-Liquid Equil.
∋ 0.2 ∋ < 0 undefined 1.1 Vapor-Solid Equil.

LGP surrogate models reduce the computational time complexity of standard GP regression with little loss in predictive
accuracy [176, 179, 214]. Hyperparameter selection was performed using leave-one-out marginal likelihood Bayesian
optimization [191] with Markov chain Monte Carlo (Figure 27) and surrogate model accuracy (Figure 28) was
determined to have a root-mean-square error (RMSE) of 0.0036 for a 160 randomly sampled test set within the surrogate
parameter range.

4.4 Results and Discussion

Bayesian analysis was performed on structure factors with introduced uncertainty at 16 reference conditions. The aim
was to determine the requisite threshold precision for extracting force field parameters from structure factors with a
high level of fidelity. This threshold should allow for a clear choice of force parameters, exemplified by a sharp and
unimodal distribution.

4.4.1 Sensitivity Analysis with Local Gaussian Process Derivatives

The LGP surrogate model allows us to quantify the impact of varying () -6) Mie parameters on the structure at specific Q
values. One notable advantage of GPs is that they possess an analytical derivative, enabling the estimation of quantities
such as ,S(Q)

,( , where ( is some force model parameter () ,! ,∋) excluding the nuisance parameter !n. By examining
the zeros and extrema of the LGP derivative, we can identify regions within the structure factor that are least and most
affected by changes in the force parameters. This analysis provides valuable insight into the relationship between force
parameters and the structure factor.

Figure 29 illustrates the derivatives of the surrogate model-predicted structure factor with respect to each parameter of
the () ↓6) Mie force field. We find that even small changes in the Mie parameters results in substantial modification
of the structure factor patterns. Consequently, provided experimental scattering results meet a necessary accuracy
threshold, all three of the Mie model parameters (short-range repulsion, size, and dispersive attraction) could be
extracted. Changes to the structure factor; however, do not impact all force parameters equally. The repulsive exponent
derivative exhibits a small magnitude and undergoes sign changes near the full-width half maximum of the structure
factor peaks. This behavior suggests that increasing the repulsive exponent, which determines the "hardness" of the
particles, causes a slight increase in height and narrowing of the structure factor peaks without significantly affecting
their location. In the case of the collision diameter, zeros of the derivative occur at structure factor peaks and troughs,
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Figure 27: Bayesian posterior distribution for LGP hyperparameters according to the leave-one-out marginal likelihood.

while local extrema align with the half-maximum positions. Consequently, increasing the effective particle size shifts
the structure factor towards lower Q values while maintaining relatively constant peak heights. Regarding the dispersion
energy, its derivative displays zeros at the half-maximum positions of the structure factor and local extrema near the
peaks and troughs. This behavior indicates that an increase in the dispersion energy leads to an increased magnitude
and sharpening of the structure factor peaks similar to the repulsive exponent.

Computation of the LGP derivative can also be performed over the entire validated range of the surrogate model. To
visualize the results, we present a heat map of the maximum of the absolute value of the derivative with respect to
reduced temperature T ∝ = T /∋ and reduced density #∝ = #!3 in Figure 30. Higher values (yellow regions) indicate a
high sensitivity of the structure factor relative to lower values (blue regions). First note that the maximum derivative
estimates vary in magnitude significantly, with a two orders-of-magnitude smaller value for the repulsive exponent
(0.032) compared to the collision diameter (5.0) and dispersion energy (1.6). The repulsive exponent ) exhibits
biomodality as a function of #∝, with higher sensitivity regions tending towards higher densities. This behavior could
be explained by the fact that high density systems tend to collide more frequently at close range which is where the
repulsive exponent strongly influences the potential energy function. The collision diameter ! has a clear sensitivity
trend with more sensitive regions being higher density and lower temperature. Observing the sensitivity over the full
range (Figure 30a), we can see that there also appears to be asymptotic behavior near specific densities, suggesting
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Figure 28: Root-mean-square error between LGP surrogate model prediction and training set points.

Figure 29: Derivatives of the surrogate model-predicted structure factor, S(Q), with respect to each parameter of the
() ↓6) Mie force field (red line) plotted with the given structure factor (blue line).

60



Uncertainty-Aware Liquid State Modeling from Experimental Scattering Measurements

Figure 30: (a) Heat map of the maximum absolute value of the structure factor derivative with respect to each parameter
of the () ↓6) Mie force field for the validated range of the surrogate model and (b) near the vapor-liquid coexistence
line (red line).

that the higher sensitivities correspond to closer proximity of the atoms where excluded volume effects can dominate
the structure. Finally, the dispersive forces appear to become more significant to the structure within the vapor-liquid
phase envelope, which makes sense considering that vapor-liquid equilibrium involves the interplay between cohesive
attraction holding together the liquid phase and the equality of chemical potential driving the formation of the gas phase.
The trend of higher sensitivity of the dispersive attraction towards lower densities could also be due to the fact that
attractive forces play a more significant role in this region of the phase diagram in comparison to excluded volume
effects. Of course, the validated range of the surrogate model is limited by the computational cost of running training
simulations and further investigation of Mie parameter sensitivity to other regions of the phase diagram is reserved for
future study.

4.4.2 Force Field Parameter Posterior Distributions as a Function of Uncertainty

Armed with a precise and rapid surrogate model for the fluid structure factor, we can now proceed to evaluate the
likelihood function and, consequently, derive Bayesian posterior distributions. Figure 31 illustrates experiment averaged
marginal probability distributions of () ,! ,∋) as a function of noise. Note that these distributions represent an average
over MCMC samples from the 16 in silico experiments. Conceptually, these posterior distributions are an approximation
to the marginal parameter posterior distributions over the joint probability density containing the model parameters,
structure factor, and thermodynamic state, p() ,! ,∋ ,S(Q),T ∝,#∝), where T ∝ = kbT /∋ and #∝ = #!3 are the reduced
temperature and density, respectively.

The 1D Marginal distributions in Figure 31 are obtained by integrating the joint posterior probability distribution over
all but one model parameter. The mode of the marginal distribution corresponds to the marginal maximum a posteriori
(MAP). It is worth noting that as the uncertainty in the structure factor increases, the marginal distributions become
wider and flatter. This behavior is expected, as greater uncertainty in the observation leads to increased uncertainty in
the parameter distribution. In cases where the structure factors exhibit low uncertainty, the MAP estimates accurately
recover the unknown force field parameters. Deviation between the MAP estimate and true parameter value is calculated
as a function of uncertainty and presented in Table 15.

First, note the drastic difference in the accuracy of the MAP estimates for the repulsive exponent and dispersion energy
parameters as we transition from an uncertainty level of ∃S = 0.025 to ∃S = 0.05. The ! parameter is accurately
estimated in both scenarios, demonstrating its reliable prediction even for low quality scattering data. In the ∃S = 0.025
case, the ) and ∋ parameters are also accurately predicted. However, for the ∃S = 0.05 case, the ) and ∋ parameters
become unlearnable with MAP deviations of -1.173 and -0.05, respectively. This large deviation clearly indicates that
the data quality is too low to reliably extract subtle details of the potential energy function, which recent work has
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Figure 31: Mie parameter veraged marginal posterior distributions at varying structure factor noise levels. (a) 3D
histogram of the average marginal distributions on the () ↓6) Mie force field parameters as a function of uncertainty in
the structure factor (∃S). (b) MAP estimates (points) are plotted with 2 std. dev. error bars as a function of noise. Low
parameter uncertainty cases (blue) are compared to high uncertainty cases (red) and the lower limit precision of current
neutron instruments (black dashed line).

Table 15: Error in () ↓6) Mie force field parameters determined by Bayesian inference on the structure factor. ∆p is
the difference between the MAP estimate and the underlying parameter set.

Comparable Neutron Instrument ∃S ∆) ±2!) ∆! ±2!! ∆∋ ±2!∋
- 0.0025 -0.051 ± 0.9 0.000 ± 0.01 0.00 ± 0.07
- 0.00375 -0.255 ± 1.0 -0.002 ± 0.01 0.00 ± 0.09

NOMAD (2012) 0.005 0.051 ± 1.3 -0.002 ± 0.01 0.02 ± 0.10
NIMROD (2010) 0.01 -0.561 ± 2.1 -0.006 ± 0.02 0.03 ± 0.19

D4B (1993) 0.025 -0.561 ± 4.8 -0.004 ± 0.03 0.03 ± 0.29
Omega West (1973) 0.05 -1.173 ± 6.7 -0.002 ± 0.04 -0.05 ± 0.36

shown to be imperative to model thermodynamic behavior at extreme pressures [215]. This observation is critical in
the context of prior studies in which it has been concluded that the structure factor is insensitive to the interatomic
interactions beyond the excluded volume [17, 194] or that uncertainty in the structure measurement impeded prediction
of transferable potentials [18, 28, 66]. In these studies, the instrument uncertainty ranged from values of 0.03-0.07,
exceeding the threshold identified by our model. Barocchi’s (1993) study on liquid krypton was unique in the conclusion
that the neutron instrument accuracy was now high enough to elucidate detailed many-body interactions [102], which
was concluded based on structure factors measured to a precision ↘ 0.025. Based on our structure factor precision
model, we find that these conclusions were likely appropriate for the data quality available.

The data also shows a significant change in the width of the distributions at critical uncertainty levels. The standard
deviation effectively doubles for the Mie parameters between ∃S = 0.005 and ∃S = 0.01. This rapid increase in width
of the posterior distribution is significant since it becomes exceedingly more difficult to estimate the potential parameters
using optimization techniques. Based on these shifts in the standard deviations, we recommend that neutron scattering
experiments for liquids not exceed random errors of ∃S = 0.005 out to ⇑ 30 Å↓1 if attempting to extract pair potential
information from the structure factor. This level of precision is achievable on modern instruments but may require
longer run times than standard neutron scattering measurements.
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4.4.3 Uncertainty Quantification on a State-of-the-Art Neutron Instrument Model

We have demonstrated through uncertainty quantification that prior conclusions to inverse problem solutions were
likely limited based on the experimental accuracy of the scattering instruments of their time. Furthermore, modern
diffractometers are sufficiently precise to provide reliable inverse problem solutions to assess a variety of atomic force
properties. Consequently, we further analyze the posterior distributions for structure factor results that are consistent
with modern diffractometers. The highest flux instruments are spallation sources, which can measure structure factors
with constant standard deviations of ∃S = 0.005 out to 30 Å↓1. This condition well-represents an upper bound of
uncertainty in a structure factor measurement on the state-of-the-art NOMAD and NIMROD instruments. Posterior
marginals, Markov chain Monte Carlo (MCMC) samples and heat maps of the joint posterior distribution are illustrated
in Figure 32.

The marginal MAP, corresponding to the global maximum of the marginal distribution, accurately predicts the true
parameter values (indicated by red dashed lines) with exceptional precision, exhibiting error rates below 1% for all
force parameters. The shape and width of the marginal distributions offer valuable insights into the influence of each
parameter on the ensemble fluid structure. The collision diameter marginal exhibits a narrow and symmetric shape,
characterized by a probability density at the MAP that surpasses the repulsive exponent and dispersion energy by
factors of 80 and 3, respectively. This symmetry and high probability density suggest a remarkable sensitivity of the
structure factor to changes in the effective particle size which is consistent with the observations of Weeks, Chandler
and Anderson [200]. However, the seemingly small difference between the repulsive structure factor alone and the true
structure factor clearly contains sufficient information to determine the potential well-depth as well as the repulsive
exponent and collision diameter. Therefore, we contend that the structure factor of liquids contains more information
than previously believed.

Two standard deviations of the posterior distribution can be used as an estimate of our confidence in recovering the
force parameter from the structure factor with ⇑95% confidence. Using this metric, we find that the force parameters
can be recovered with 95% confidence within ±1.3 for the repulsive exponent, ±0.02 ! , and ±0.1 ∋ . Of course, the
posterior distributions computed here are in reduced Lennard-Jones (LJ) units and must be scaled by a known reference
to approximate the credibility intervals in real units. For example, taking the LJ parameters for argon (! = 3.4 Å,
∋ = 0.24 kcal/mol [189]) would give a real unit estimate of )±1.3, !±0.068 Å, and ∋±0.024 kcal/mol with 95%
confidence.

Uncertainty quantification and propagation of the potential in relation to the structure factor holds the key to unlocking
several capabilities of neutron scattering, including force field design, elucidation of many-body interactions, and
improved understanding of structural properties in fluid systems [216]. While these aims have motivated research on the
inverse problem for over a century, we are only now seeing evidence that accurate structure inversion on experimental
data is a possibility. We argue, despite having presented a study on a simple model, that our results warrant the
recommendation of revisiting inverse methods for real fluids.

One exciting prospect for inverse problem methods is that interaction potentials derived from structure can serve as
an external validation to computationally expensive bottom-up atomistic models. One example is electron structure
calculations, in which a highly accurate quantum mechanical treatment of the electron structure can reveal insights into
potential energy surfaces and reaction mechanisms. Electron structure methods have become faster and more robust
due to quantum computing [217], clever basis set selection [218], and machine learning [219, 220]. As these more
fundamental theories of atomic structure and motion become commonplace, experimental neutron scattering data will
be a crucial validate of their predictions. Indeed, we have already shown that many-body interactions in noble gases are
consistent with electron structure calculations in trimeric systems [189, 221]. However, further advancement of inverse
methods can provide quantifiable validation of many-body interactions in progressively complex systems.

In contrast to experimental analysis, inverse methods for coarse-graining have thrived in contemporary chemical
physics. In coarse-graining, structure factors are generated from a known model where the uncertainty fluctuations
are significantly smaller than that of experimental data. Bayesian analysis indicates the presence of global maxima in
the posterior distributions of such systems, suggesting that well-behaved optimization schemes should be capable of
reliably identifying these maxima. Since global maxima are also expected in experimental scattering measurements
conducted using state-of-the-art neutron instruments, there is an opportunity to employ these maximum-likelihood
methods for developing novel force fields directly from experimental data. With this evidence, we hope to bridge the
gap between experiment and simulation-based inverse techniques and foster closer collaboration between these two
communities.

It is important to acknowledge certain limitations in the previous analysis when considering the extension of the results
to other physical systems. First, the sensitivity of more complex systems than the () -6) Mie model may differ from
the estimates reported in our study. Therefore, it is cautioned to interpret the results of this example as a conceptual
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Figure 32: Marginal distributions on the () ↓6) Mie force field parameters for ∃S = 0.005 at 30 Å↓1 with variance
sampled with MCMC plotted with known parameter values (red dashed line).
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exploration of how classical two-body interactions impact the atomic organization in fluids. Hence, the specific response
of complex systems to variations in interatomic forces should be studied individually. Second, if a fluid cannot be
adequately described by a () -6) Mie model, the resulting posterior distribution may exhibit flatness or multimodality,
indicating a high level of uncertainty in both the structure and model parameters. In such cases, a more accurate model
of the system should be adopted to facilitate reliable parameter inference. Furthermore, systematic errors were not
investigated and are certainly significant to the potential reconstruction. Therefore, further work should explore how
to eliminate systematic errors in neutron scattering analysis through physics-based Gaussian process regression or
analogous approaches.

4.5 Conclusions

Rigorous uncertainty quantification and propagation analysis has shown that modern neutron diffractometers have
attained the necessary accuracy for reliable force field reconstruction. It has also been shown that neutron scattering
measurements within ↘ 0.005 at ⇑30 Å↓1 are sufficient for force parameter recovery in simple liquids. We stress that
the structure factor contains information on the force field parameters that control the attractive as well as the repulsive
part of the interatomic potential. This study highlights the exciting possibility of using neutron scattering to predict
the potential energy function of Mie-type fluids, emphasizes the critical role of experimental precision in extracting
potentials from scattering data, and offer svaluable insights into the nature of interatomic forces in liquids.

The significance of these results extends beyond the field of neutron scattering analysis. They hold great potential in
advancing force field design and optimization, enabling the development of effective coarse-graining techniques, and
facilitating the exploration of many-body effects in fluid ensembles. The far-reaching impact of machine learning-
accelerated methods in predicting interatomic forces from experimental structure measurements is evident. In summary,
this research establishes the transformative potential of machine learning in extracting interatomic forces from experi-
mental structure measurements with uncertainty quantification.

5 Conclusions and Future Work

5.1 General Conclusions

In this dissertation, it was shown that adopting a Bayesian philosophy to contemporary problems in condensed matter
physics can unlock novel applications of liquid state theory to analyze scattering experiments. For example, we have
shown that function space Bayesian inference using Gaussian processes can allow for the extraction of transferable
force fields for real fluids, the first result of its kind in the 100 year history of structure inversion methods. Furthermore,
a practical and easy-to-implement Bayesian approach was outlined to train classical force field models on complex
experimental data at a previously inaccessible computational scale. Finally, ultra-fast Bayesian methods were leveraged
to revisit prior literature claiming that scattering data is unsuitable for force extraction and showed that this conclusion
is likely no longer true for modern neutron instruments and computer simulations. The primary aim of this dissertation
was to present novel applications of Bayesian analysis within liquid structure analysis. It is my hope that these results
can form the foundation of a general Bayesian theory for the liquid state, in which we leverage all available experimental
data, physical knowledge, and computational resources to link the quantum mechanical scale all the way through
macroscopic scale thermodynamics.

Chapter 2 applied a Gaussian process regressor as a probabilistic interpreter of a Henderson inverse theorem potential
refinement scheme, which we called structure optimized potential refinement (SOPR). Philosophically, the approach
amounts to assuming that the output from iterative refinement is an observation of a potential from a functional
distribution with physically-justified properties; namely, the potential function is continuous, differentiable, and varies
over a length scale of ⇑1Å. It was shown that under these loose requirements that a nonparametric potential derived
from noble gas radial distribution functions was consistent with pair potentials trained on detailed thermodynamic data
with the flexible () ↓6) Mie functional form. The remarkable consistency of a fully nonparametric Bayesian scheme
with a flexible parametric model indicates that there is detailed interatomic force information contained in the structure
of simple liquids and that these forces can be used to predict complex thermophysical properties of the liquid state.

One important limitation of the method from Chapter 2 is that there is a fundamental lack of uniqueness in site-site partial
radial distributon functions in molecular liquids and mixtures. Without a proper characterization of these distribution
functions, a nonparametric approach is difficult to implement and potentially unreliable as demonstrated by previous
work [51]. However, providing a stronger restriction on the potential function space to an established parametric
form could eliminate some of these challenges and enforce consistency with existing molecular simulation methods.
Therefore, Chapter 3 explored the incorporation of Bayesian uncertainty quantification for parametric potentials trained
on radial distribution functions. The main idea was to create a fast and reliable uncertainty quantification framework
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that could be used to train parametric force fields to structural data. In this process, we were able to speed-up the
Bayesian analysis by over a million-fold by using local Gaussian processes as a surrogate model to replace the expensive
molecular simulation training step. This method holds promise as a tool to learn parametric force fields in more complex
liquids as it can be trained on relatively few simulations (⇑1000). Finally, () ↓6) Mie potentials recovered for liquid
neon, a traditionally difficult to model liquid, were consistent with both SOPR potentials and a vapor-liquid equilibrium
trained model [87]. Consistency across multiple training schemes bolsters the validity of the method as a force field
development tool.

Chapter 4 leverages the local Gaussian process surrogate model developed in Chapter 3 to probe the importance of
neutron scattering measurement accuracy on the extraction of forces from structural data. This question has deep roots
in the liquid state theory community and was studied by Verlet [199] and Soper [36, 51] over decades of structure
research. The importance of this question lies in the fact that we need to be able to identify what available data is
suitable for force field modeling and whether or not new neutron experiments are necessary. Furthermore, since the
work uses a Bayesian uncertainty quantification framework, we identified that it is possible to recover force parameters
with high certainty from neutron measurements collected on state-of-the-art neutron diffractometers.

Taken together, the results of this dissertation paint an optimistic picture of scattering analysis in the context of liquid
state theory. It has been shown that adopting a rigorous mathematical framework for uncertainty quantification can
unlock novel capabilities of scattering analysis and inform modeling decisions and fundamental insight into the natural
world. Finally, the methods and philosophical approaches that underscore the novel research contributions of this
dissertation are already showing progress on more complex systems. Based on these preliminary successes and the
strong evidence provided in this dissertation, I speculate that a Bayesian approach to liquid state theory will continue to
revolutionize the field of atomic scale chemistry and physics well into the future.

5.2 On the Horizon

Described below are a selection of ongoing and future research directions suggested by the contents of this dissertation.
The list is not exhaustive as the use of Bayesian methods in computational chemistry and materials engineering provide
a lifetime of potential scientific study.

5.2.1 Quantifying Many-Body and Quantum Effects with Neutron Scattering

The biggest limitation of the SOPR method is its restriction to classical pairwise additive potentials. Real physical
systems behave quantum mechanically and are inherently many-body in nature, leading to effects that cannot be directly
modeled in a classical representation. Additionally, we have not yet verified whether decomposing the SOPR potentials
into a quantum dimer and effective many-body term can capture higher-order effects (Figure 33). One proposed test
is to run a model system with 2- and 3-body interactions and then attempt SOPR on the resulting radial distribution
function with a 2-body reference potential. If SOPR could recover the effect of the 3-body term, then we could verify
whether or not the decomposition is appropriate for measuring many-body interactions.

Recently, we have been further exploring how SOPR potentials change at different thermodynamic states using a
neutron scattering dataset of supercritical krypton at varying pressures. As discussed in Chapters 2 and 4, we have some
evidence that the interatomic forces change at different thermodynamic states, and that those changes may correlate to
many-body and/or quantum mechanical effects. Finally, we have preliminary results showing that SOPR corrections to
ab initio pair potentials in noble gases show changes in effective particle size consistent with the polarizability of the
electron cloud, a result recently demonstrated theoretically [222]. An expanded discussion on SOPR corrections to
quantum pair potentials and its connections to electronic polarization is included in Appendix A.

5.2.2 Structure Optimized Potential Refinement for Molecular Liquids

The continued success of structure optimized potential refinement hinges on its extension to molecular liquids and
mixtures. The primary challenge here is that updating multiple pair potentials simultaneously can result in a loss in
uniqueness of the resulting potentials and lead to unstable convergence. However, the Gaussian process can mitigate
these problems by acting as a probabilistic regressor over the pair potential estimation. For example, the GP kernel
can be modified to enforce a power-6 attractive tail behavior, as predicted from quantum mechanics, while allowing
flexibility at short-range to accommodate subtle features present in the neutron scattering data. One kernel function that
enables this flexibility is an inverse squared-exponential kernel given by,

k(xi,x j) = % exp




↓2l2

(
1

xi2
↓ 1

x j2

)2



 (52)

66



Uncertainty-Aware Liquid State Modeling from Experimental Scattering Measurements

Figure 33: Recovering pair and triplet terms of the many-body potential energy expansion needs to be further explored.
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where % is the variance in the pair potential space and ω is a length-scale parameter that approximately controls when
the kernel transitions from short to long range covariance. The GP then enforces physically-justifiable behavior, such as
continuity, differentiability, and a general functional form consistent with quantum mechanics.

5.2.3 Spectral Gaussian Process Fourier Transforms

As discussed in the Introduction, radial distribution functions cannot be extracted perfectly from a neutron scattering
measurement due to the finite nature of the Fourier transform between momentum and real space. The biggest gap in the
current literature on structure factor Fourier transforms is a lack of robustness and uncertainty quantification. Essentially,
we can get estimates of the pair and total radial distribution functions, but we cannot quantify how confident to be in the
results. Clearly, this is a serious problem for using scattering data to inform liquid state models as evidenced by the
uncertainty quantification performed in Chapters 3 and 4 of this dissertation. Furthermore, it is equally concerning that
molecular dynamicists have no credibility intervals to compare their force field structure predictions to experiments.

To address this challenge, we have recently been applying Gaussian processes to the structure factor function space. The
idea is to construct a Gaussian process regressor with a physics-informed kernel that can learn the mean and variance of
the structure factor functional distribution. Using either a sampling approach or the analytical Fourier transform of the
Gaussian process [107], one can then construct a functional distribution of radial distribution functions in real space.
Alternatively, one could try and design non-stationary spectral kernels [223], although we have found that this method
is not restrictive enough to enforce known physical behavior.

5.2.4 Bayesian Uncertainty Quantification for Machine Learned Potentials

Machine learning potentials (MLPs) are becoming ubiquitous in the simulation of functional materials, with contem-
porary applications spanning from the design of organic semiconductor photovoltaic cells and battery electrolytes
[183, 224] to metal organic frameworks and super low temperature hydrogen storage [185]. The main idea behind
MLPs is to take state-of-the-art ab initio electron structure methods, such as density functional theory (DFT), and learn
surrogate models of interatomic forces that can be evaluated at the computational expense of classical molecular models
[225]. In turn, this enables the investigation of molecular dynamics at quantum mechanical accuracy with relatively low
computational effort, accelerating the innovation of novel materials to address contemporary challenges from energy
storage to carbon capture.

However, strong criticisms of MLPs largely focus on a lack of interpretability of the resulting force fields and a failure to
include experimental data into the model training [226]. Indeed, most MLP models rely solely on force estimations from
electronic structure calculations and neglect important experimental information that may contain nuanced information
on interatomic interactions, such as structural correlation functions and electromagnetic spectra [227]. Furthermore,
black-box machine learning methods such as neural network potentials are often criticized as being non-interpretable
and, lacking built-in uncertainty quantification and propagation (UQ/P), are too uncertain to be reliable in drawing
physics based conclusions on the resulting potentials [151]. Therefore, incorporating experimental data into an MLP
framework with UQ may yield substantial improvements in molecular model predictions, enhance intepretability, and
cement adoption of MLPs within the computational chemistry community at large.

Bayesian inference could be used to address these criticisms by including experimental data into MLP training.
Specifically, a Bayesian committee, which is essentially just a collection of informed "voters" on the outcome of the
MLP prediction, will be employed to estimate interatomic forces based on a combination of DFT calculations and
experimental data [228]. The Gaussian approximation potential (GAP) framework [181], a machine learning surrogate
model approach that employs sparse Gaussian processes to learn interatomic forces from DFT calculations, will be the
ideal foundation to incorporate the Bayesian committee over the potential field. The end product will be a method to
build physics-guided and interpretable MLP potentials for contemporary problems in functional material modeling and
design that will represent the state-of-the-art in both quantum physics and experiment.

6 Appendix

A Quantum and Many-Body Effects from Neutron Scattering

SOPR potentials represent an estimate of the interatomic force between atoms based on a sub-angstrom length scale
scattering experiment. Furthermore, since the scattering experiment obeys quantum mechanical laws and is the
time-averaged measurement of a large number of atoms, we expect the measured structures to reflect both quantum
mechanical and many-body interactions occurring in the liquid phase system. The hypothesis, then, is that SOPR
potentials can capture these effects in a pairwise additive, mean field approximation. Although Chapter 2 provided
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speculative evidence that corrections to the quantum pair potential were consistent with quantum mechanical arguments
proposed in prior literature, it still remains to show whether SOPR potentials definitively provide meaningful information
on quantum and many-body effects in real fluids.

A.1 Relations Between Atom Size and Electron Polarization

Atom size is a fairly ambiguous quantity, as you can prescribe a number of different criteria to map the volume occupied
by an atom or molecule to some radius. Some examples include the Van der Waal radius, defined as the radius of a
hard-sphere representing the distance of "closest approach" for a neighboring atom, or the atomic radius which specifies
the distance from the nucleus to the most probable outermost electron. While atomic size is not really that interesting of
a property, it is still critical for atomic models of liquids and has fundamental relationships to electronic properties of
atoms. For example, a recent study [222] showed that the van der Waal radius, RvdW , in a quantum Drude oscillator
model was related to the polarizability, % , according to the following equation,

RvdW = 2.54%1/7 (53)

which deviates from the classical result of Rclassical
vdW = 1.62%1/3. Fedorov and coworkers demonstrated that this relation

well-reproduced the van der Waal radius of 72 elements, providing a means to estimate the approximate hard-sphere
diameter of even complex atoms such as metals. However, it is notable that the radii computed using this approach
would not be suitable for liquid state modeling for more complex thermodynamic properties that require a detailed
description of the short-range repulsive exponent, collision diameter and dispersion energy as shown for high pressure
systems [215] and vapor-liquid equilibrium [87]. For example, the van der Waal radius for neon calculated with 53
gives a value of 2.91 Å, which is significantly outside of the parameter distributions estimated for neon for structural
correlations and vapor-liquid coexistence.

The radial distribution function provides a notion of atom size by definition. By taking any arbitrary particle in the
system and counting the number of particles within a spherical shell of thickness dr (spherical surfaces at r and r+ dr),
we will always observe that there is an excluded volume region where the shell is inside of the arbitrarily chosen particle.
At some r, the shell will become larger than the particle size, begin to count other atoms, and the radial distribution
function will spike up and become non-zero. By virtue of structure-potential relationships in classical mechanics, this
region will correlate with the steep rise of the short-range repulsive part of the interatomic potential.

The question then is, given that we can learn the interatomic potential from a radial distribution function using SOPR,
is there a way to estimate the atomic size and relate it back to fundamental quantum mechanical results on more
interesting properties. One such approach was potential perturbation method proposed by Weeks, Chandler, and
Anderson known as the Weeks-Chandler-Anderson (WCA) separation. The WCA separation splits the potential into a
short-range repulsive wall and a long-range attractive tail at the minimum of the potential well. Figure 34 shows the
WCA separation for the SOPR potential derived for liquid Ne at 42K.

Once the potentials are decomposed using the WCA separation, we can apply perturbation theory to estimate an
equivalent hard-sphere diameter, d, from the repulsive part of the potential [17, 200] according to the following
equation,

d =
∫ !

0
[1↓ exp(↓&v0(r))]dr (54)

where v0(r) is the repulsive part of the WCA separation. The integrand [1↓ exp(↓&v0(r))] is unity at low r since
exp(↓&v0(r)) is negligibly small due to the y-asymptotic behavior of v0(r). At longer range, v0(r) is zero by definition,
which sends the integrand to zero as well. A plot of the integrand for Ne, Ar, Kr, and Xe WCA separated SOPR
potentials is shown in Figure 35. Integrating this quantity provides an estimate of the equivalent hard-sphere diameter
that can be used to study how particle sizes change with polarization of the electron cloud.

Figure 36 shows the hard-particle diameter calculated from (54) versus the electron polarizability along with results
compiled from Fedordov et. al. and collision diameter estimates from quantum pair potentials. It is immediately
striking that the classical prediction exhibits significantly different behavior than the other three methods. Furthermore,
we can see that the two methods of estimating the atom size with quantum mechanical methods, i.e. the quantum Drude
oscillator approximation in red and advanced electron structure calculations in black, give the same scaling behavior
estimated from the neutron data. This result is exciting since it provides experimental validation for the quantum
mechanics calculations and demonstrates that SOPR potentials can provide estimates of fundamental atomic properties
consistent with quantum theory despite the method being semi-classical. The results from this preliminary analysis can
be found in a preprint arXiv article here [229].

69



Uncertainty-Aware Liquid State Modeling from Experimental Scattering Measurements

Figure 34: WCA separation of the SOPR potential for liquid Ne.

Figure 35: [1↓ exp(↓&v0(r))] for WCA separated SOPR potentials.
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Figure 36: Particle radius determined from the van der Waal radius criterion (red dashed line and points), hard-particle
radius derived from SOPR potentials (blue dashed line and points), and the quantum dimer potentials (black dashed line
and points).

A.2 State-Dependent Corrections in Supercritical Krypton

Supercritical fluids have been the subject of intense investigation in recent years, owing largely to their applications as
chemical solvents in industrial processes and recurrence in the physics of extreme environments [230]. At subcritical
temperatures, violations of classical thermodynamic stability criterion characterize phase transitions. Specifically,
vapor-liquid phase separation initiated via nucleation occurs at thermodynamic paths of constant chemical potential
(binodal) while spontaneous vapor-liquid separation occurs when the curvature of the free energy with respect to
composition becomes negative (spinodal). The critical point is defined as the extremum of the spinodal, beyond which
there is no observable thermodynamic vapor-liquid phase separation. However, the fact that material properties of
supercritical fluids are highly sensitive to changes in thermodynamic state (pressure, temperature, density, etc.) and
have been shown to exhibit sharp inflections in such properties has motivated the search for a universal theory of
fluids extending beyond the critical point [231–235]. Transitions in supercritical fluids have been proposed based on
the behavior of thermodynamic and dynamical properties, including thermal conductivity, density fluctuations [236],
density distribution functions [237, 238], velocity autocorrelation functions, specific heat, speed of sound, and diffusion.

One proposed theory of supercritical fluids asserts that inflections in the observed material properties can be attributed to
the ability of the fluid to sustain significant transverse excitation modes [239–241]. Conceptually, this transition occurs
at the Frenkel time scale −F , defined as the average time required for the mean squared displacement of a particle to
equal its effective particle size. This transition is referred to as the Frenkel line. While a precise theoretical framework
for defining the Frenkel line has not been clearly identified, simulation and experimental evidence of inflections in
model and real fluid properties near the Frenkel line have been observed. Of considerable interest is a recent neutron
scattering study on supercritical krypton that reported the emergence of medium range order (⇑ 7-10Å) in the radial
distribution function at ⇑ 110 MPa along the 310K isotherm, indicating a transition from non-rigid to rigid dynamics
that was attributed to crossing the Frenkel line [35]. The authors noted that empirical potentials derived from the neutron
scattering analysis technique empirical potential structure refinement (EPSR) significantly deviated from a standard
(12-6) Lennard-Jones potential, a model potential that is often used to approximate the Frenkel line with molecular
simulation techniques. However, EPSR potentials are known to be unreliable in the prediction of thermodynamic
properties as the technique was designed to determine molecular configurations consistent with experimental scattering
rather than estimate physically accurate or transferable potentials. Thus, systematic analysis of the state-dependence of
the interatomic potentials for supercritical krypton remains unresolved.
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Figure 37: Phase diagram of krypton with neutron scattering experiments (colored points) and proposed supercritical
transition lines drawn in based on results for the Lennard-Jones fluid.

In addition to the proposed Frenkel line transition, there has also been work investigating supercritical phase transitions
based on a maximum in the local correlation length in the pressure-temperature diagram (the Widom line) [239,
242–244] as well as a change in the oscillatory behavior of the radial distribution function (the Fisher-Widom line) [245].
Here we will focus on supercritical transitions defined by the radial distribution function; namely, the Fisher-Widom and
pair correlation definition of the Frenkel transition. Figures 37 and 38 show what neutron scattering data is available on
the krypton phase diagram as well as a plot of radial distribution functions reported in the literature [35, 102].

Looking at Figure 37, we can see that there are two data points (camo green and neon green) that fall to the left of the
Fisher-Widom transition, while the rest fall to the right. According to Fisher and Widom’s hypothesis, the oscillatory
behavior of the radial distribution functions to the left of this transition should exhibit an always positive exponential
decay whereas those to the right should be oscillatory [246]. Seeking the first experimental evidence for this transition,
we computed the quantity logrh(r) from the neutron scattering derived radial distribution functions to see if this
behavior is observed in Figure 39.

Monotonic decay at long range is not observed for the two conditions left of the Fisher-Widom line but is observed
for two conditions right of the transition. Therefore, it is concluded that the neutron data available does not support a
supercritical transition across the Fisher-Widom line for krypton. However, it is notable that the neutron scattering
measurements used to derive these radial distribution functions may not be accurate enough to observe this subtle effect.
For instance, all of the krypton scattering measurements reported had random errors larger than those identified in
Chapter 4 for structural inversion analysis and the 2022 dataset of high pressure supercritical appears to show systematic
errors in the raw scattering data (see Supporting Information from Pruteanu et. al [35]).

The next steps of this work are to apply structure-optimized potential refinement to quantify state-dependent many-body
contributions to structure derived effective pair potentials. SOPR has been shown to predict transferable potentials
in the subcritical region, challenging the established notion that state-dependent structure derived potentials are non-
transferable to macroscopic thermodynamic property predictions. If the SOPR potentials do not significantly change
along the 310 K isotherm and show no discernible change when crossing the Frenkel line, then we can conclude that
there is no evidence of a transition in the interatomic forces across the proposed transition. Otherwise, we would be able
to provide evidence of a transition in the interatomic forces that is independent of a thermodynamic phase transition.

72



Uncertainty-Aware Liquid State Modeling from Experimental Scattering Measurements

Figure 38: Available radial distribution functions derived from neutron scattering data for krypton.

Figure 39: logrh(r) for available radial distribution function for krypton.
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B Statistical Mechanics of Liquid Phase Systems

The following appendix comprises the key results used in my lectures on statistical mechanics and molecular simulations
during the Fall, 2023 term at the University of Utah. The mathematical framework presented here forms the foundation
of the statistical mechanical results presented in this thesis. The main references used in compiling these lectures were
the following:

1. Statistical Mechanics for Engineers - Isamu Kusaka [247]
2. Thermodynamics - Herbert Callen [248]
3. Thermodynamics - Enrico Fermi [249]
4. The Collected Works of J. Willard Gibbs [250]
5. Theory of Simple Liquids - Hansen and McDonald [17]

B.1 Classical Thermodynamics

An agglomerate of matter consists of an enormous amount of atoms. A single glass of water contains somewhere
between 1024 and 1025 atoms alone! From a classical mechanics point of view, modeling the glass of water would
require solving momentum equations for all 1025 atoms simultaneously. Clearly, this is beyond even the most powerful
supercomputers that exist today. So, the question becomes, how can we study systems composed of an inconceivable
number of particles without appealing to classical mechanics?

The characteristic time period of an atomic motion is on the order of 10↓15 seconds. Therefore, even during a
measurement of a system that is captured in a single microsecond, the atoms of a typical solid still go through ten
million vibrations. This implies that a macroscopic measurement senses only averages of the atomic coordinates.

A map of how the atomic coordinates change is known as a normal mode. A normal mode is a coupled motion of
atomic coordinates that include divergence (increase in particle density), convergence (decrease in particle density), and
vibration. Some normal modes can be seen macroscopically, such as a change in volume or electric dipole. Others, like
atomic vibrations, cannot be seen and are therefore "lost" in macroscopic observation. Classical thermodynamics is
concerned with normal modes that are observable on a macroscopic scale.

By taking this macroscopic view, we lose a sense of how the motions of atomic coordinates can transfer energy. In
Thermodynamics, we refer to this "invisible" mode of energy transfer as heat. From the Classical Mechanics perspective,
heat is non-existent, since the energy of the system is completely characterized by generalized momentum and position
for each particle. From this perspective, conservation of energy of a closed system requires that the change in energy be
directly equal to the classical mechanical work done on the system, W’

∆E =W ⇒. (55)

To accommodate the fact that we cannot observe all forms of energy transfer macroscopically (what we will call work),
we must split the W’ into observable energy transfer, W, and unobservable energy transfer, Q (heat). This gives us the
first law of thermodynamics

∆E =W +Q. (56)

Now, in thermodynamics we are not typically concerned with the motion of a system in space or its change in position
with respect to an external field, so we can simplify our energy conservation equation to simply include the internal
energy, U,

∆U =W +Q (57)

where W and Q are path functions, meaning that they depend on the exact way that changes are brought about by
them. W is a path function because, in defining it, we have lost track of microscopic displacements, whereas classical
mechanical work W’ is a path-independent function. An infinitesimal view of this equation is shown below,

dU =d̄W +d̄Q (58)

where d̄ indicates an imperfect differential. The differential is imperfect since W and Q are path-dependent functions.

74



Uncertainty-Aware Liquid State Modeling from Experimental Scattering Measurements

B.1.1 Thermodynamic Postulates

Thermodynamics is concerned with both reversible and irreversible processes, but for now let us consider equilibrium
thermodynamics. An equilibrium state is a state of the system that, given a certain set of internal parameters U, V, and
Ni (i = 1, ..., n), the system tends to evolve towards. This leads us to the first postulate.
Postulate B.1. There exist particular states, called equilibrium states, that are completely characterized by U, V, Ni (i
= 1, ..., n).

Note that in more complex systems, we require an inclusion of elastic strain parameters and electric dipole moment
(also macroscopically measurable properties). A system at macroscopic equilibrium is a system where all representative
atomic states of the system exist in the time scale of a macroscopic measurement.
Postulate B.2. There exists a function, S, such that, S = S(U,V,N). Furthermore, the extensive parameters take values
so that this function is maximized over the manifold of constrained equilibrium states.

This postulate applies only to equilibrium states, but in general not to non-equilibrium states. Essentially, we are
postulating the existence of some function, called the entropy, that is maximized at equilibrium with respect to all of its
dependent variables. The following two postulates apply to properties of the entropy and they are shown below.
Postulate B.3. Entropy is additive over subsequent subsystems. Furthermore, S is a continuous, differentiable, and a
monotonically increasing function of energy.

There are immediate consequences of this postulate which are listed below.
Corollary B.3.1.

S = ∀
%

S(%) (59)

Corollary B.3.2. The entropy of a simple system is a homogeneous, first-order function of the extensive parameters.

S()U ,)V ,)N) = )S(U ,V ,N) (60)

Corollary B.3.3. The monotonic property implies that temperature is non-negative. In other words,

(
,S
,U

)

V ,N
> 0. (61)

Corollary B.3.4. Entropy can be inverted with respect to energy because it is a single-valued, continuous, and
differentiable function with respect to S, V, N.
Postulate B.4. The entropy of any system vanishes in the state when T = 0.

B.2 The 2nd Law of the Thermodynamics

Entropy can change as a result of internal or external processes. We express the differential change in entropy as,

dS =d̄Se +d̄Si. (62)

We now accept that the expression ford̄Se is given by,

d̄Se =
d̄Q
T

. (63)

On the other hand, an important consequence of of the second law is that,

d̄Si ↔ 0. (64)

Equality holds in the previous equation when the process is reversible. A reversible process is such that the sequence
of states visited by the system can be traversed in the opposite direction by an infinitesimal change in the boundary
conditions. According to the second law, processes resulting in a decrease of the entropy are impossible for an isolated
system. In terms of statistical mechanics, this is not actually the case (as will be seen later).
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B.2.1 Violating the 2nd Law: Maxwell’s Demon

Maxwell’s demon is a thought experiment which shows how the second law can be violated. In Maxwell’s words, "... if
we conceive of a being whose faculties are so sharpened that he can follow every molecule in its course, such a being,
whose attributes are as essentially finite as our own, would be able to do what is impossible to us. For we have seen that
molecules in a vessel full of air at uniform temperature are moving with velocities by no means uniform, though the
mean velocity of any great number of them, arbitrarily selected, is almost exactly uniform. Now let us suppose that
such a vessel is divided into two portions, A and B, by a division in which there is a small hole, and that a being, who
can see the individual molecules, opens and closes this hole, so as to allow only the swifter molecules to pass from A to
B, and only the slower molecules to pass from B to A. He will thus, without expenditure of work, raise the temperature
of B and lower that of A, in contradiction to the second law of thermodynamics."

B.2.2 The Fundamental Relation

To this point we have discussed entropy as a function on internal energy, volume, and the number of moles of each
chemical species. We know that based on the properties of this function that we can solve for internal energy directly
and it will be a function of entropy, volume, and the number of moles of each chemical species. Thus,

U = [U(S,V ,Ni) : i = (1, ...,n)] . (65)

To examine infinitesimal changes in the energy, we compute the first differential of U to obtain,

dU =

(
,U
,S

)

V ,N
dS+

(
,U
,V

)

S,N
dV +∀

i

(
,U
,Ni

)

S,V
dNi. (66)

The previous partial derivatives are called intensive parameters, and are given the following definitions.

(
,U
,S

)

V ,N
∋ T (67)

(
,U
,V

)

S,N
∋↓P (68)

(
,U
,Ni

)

S,V
∋ µi. (69)

With these definitions, the first differential dU can be expressed as,

dU = T dS↓PdV +∀
i

µidNi. (70)

It should now be clear thatd̄Q = T dS,d̄Wm = ↓PdV (as shown previously), and that we have an additional work
term known as the quasi-static chemical work,d̄Wc = ∀i µidNi. We should note, however, that this does not hold for
irreversible processes since these are path-dependent functions.

B.2.3 Equations of State

The intensive parameters defined previously are functions of S,V,N since they are partial derivatives of a function of
those variables. Therefore,

T = T (S,V ,Ni) (71)
P = P(S,V ,Ni) (72)

µi = µi(S,V ,Ni). (73)

These relationships that express intensive parameters in terms of the extensive parameters, are known as equations of
state. In addition, since the fundamental relation is homogeneous first order, equations of state are homogeneous zero
order. In other words,
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T ()S,)V ,)Ni) = T (S,V ,Ni). (74)

Physically, we can interpret this as the temperature of two subsystems of a composite system is not additive. In fact,
at equilibrium, any number of subsystems chosen from a composite system will have the same temperature as the
composite system as a whole.

B.2.4 The Euler Form

Recall the first order homogeneous property of the fundamental relation.

U()S,)V ,)N) = )U(S,V ,N). (75)

Differentiating with respect to ) , we find,

U =

(
,U

, ()S)

)

V ,N

, ()S)
,)

+

(
,U

, ()V )

)

S,N

, ()V )
,)

+∀
i

(
,U

, ()Ni)

)

S,V

, ()Ni)
,)

. (76)

This is true for any value of ) . Simplifying this expression and taking ) = 1,

U = T S↓PV +∀
i

µiNi. (77)

B.2.5 The Gibbs-Duhem Relation

Taking the Euler form of the fundamental relation and taking an infinitesimal variation gives,

dU = T dS+ SdT ↓PdV ↓V dP+∀
i

µidNi +∀
i

Nidµi. (78)

However, we know that the proper form of the equation from the fundamental relation is,

dU = T dS↓PdV +∀
i

µidNi. (79)

We then take the difference between these two relations to obtain the Gibbs-Duhem Relation,

0 = SdT ↓V dP+∀
i

Nidµi. (80)

This relation demonstrates the intensive parameters (T, P, and µ), cannot be varied independently. In addition, this
relation shows that in a system of n components, n + 1 intensive parameters can be varied independently. This is referred
to as the thermodynamic degrees of freedom of the system.

B.2.6 Gibbs Phase Rule

The interface between coexisting phases may be regarded as a partition that is diathermal, movable, and permeable to
all species. Thus, at equilibrium, there must be a consistency in temperature, pressure, and chemical potential across all
M phases.

T1 = T2 = ... = TM (81)

P1 = P2 = ... = PM (82)

µ1 = µ2 = ... = µM . (83)
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If we perturb the state of the system by increasing the temperature by some dT , then in order to preserve the M phases,
each phase parameter must be preserved after this change as well.

T1 + dT1 = T2 + dT2 = ... = TM + dTM (84)

P1 + dP1 = P2 + dP2 = ... = PM + dPM (85)

µ1 + dµ1 = µ2 + dµ2 = ... = µM + dµM . (86)

Thus we find that,

dT1 = dT2 = ... = dTM (87)

dP1 = dP2 = ... = dPM (88)

dµ1 = dµ2 = ... = dµM . (89)

Now, these relationships must be consistent with the Gibbs-Duhem relation, namely,

0 = SdT ↓V dP+
n

∀
i

Nidµi. (90)

If we hold pressure constant and vary only temperature, we find that,

0 = S( j)dT +
n

∀
i

N( j)
i dµi (91)

for all phases 1, ...,M. But this requires that dT and dµi are zero. That is, if we want to perturb the state of the system
while maintaining the phase coexistence, we cannot possibly hold P constant. We now have (n + 2) infinitesimal
quantities with M equations. Therefore, to ensure the system has solutions, we can only specify (n + 2 - M) of those
variables independently. This is known as the Gibbs phase rule.

B.2.7 Free Energies and the General Legendre Transform

The Legendre transform is a mathematical tool that allows us to replace the extensive parameters as independent
variables with intensive parameters. In general, the fundamental relation may be expressed as,

Y = Y (X0,X1, ...Xt). (92)

This gives a hyper-surface in a (t+2)-dimensional space with Cartesian coordinates Y ,X0,X1, ...Xt . The partial slope of
this hyper-surface is given by,

Pk =
,Y
,Xk

. (93)

Now, the hyper-surface may be defined by the fundamental relation, or by the envelope of the tangent hyper-planes. If
we consider the intercept of the hyper-plane, . , as a function of the slopes, then we obtain a relation,

Pk =
Y ↓.
Xk ↓0

. (94)

This is simply the "rise over run" equation for the slope. Now, this means that for any k,
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Y ↓PkXk = . . (95)

Performing this calculation for all (t+1) dimensions gives the relation,

Y ↓
t+1

∀
0

PkXk = . . (96)

Thus, taking the partial derivative with respect to Pk gives,

↓Xk =
,.
,Pk

. (97)

Legendre transformed fundamental relations are called thermodynamic potentials.

B.2.8 The Helmholtz Potential

Suppose that we take the fundamental relation in the energy representation, U = U(S,V ,Ni). Then the slope of the
hyper-surface formed by this fundamental relation has the usual form,

Pk =
,U
,Xk

. (98)

Specifically, if we consider the entropy as an extensive variable we would like to remove, we consider,

T =
,U
,S

. (99)

Then, we consider the intercepts of the tangent hyper-surface of this variable; namely,

T =
U ↓F
S↓0

. (100)

where F is the name of the function of intercepts with zero entropy. Rearranging this equation we find the Helmholtz
potential,

F =U ↓T S. (101)

Now, we have found F = F(T ,V ,Ni). Thus, we can compute the first differential to determine,

dF =

(
,F
,T

)

V ,N
dT +

(
,F
,V

)

T ,N
dV +∀

i

(
,F
,Ni

)

T ,V
dNi. (102)

But, from the relation F =U ↓T S, taking the first differential gives,

dF = dU ↓T dS↓SdT . (103)

Recall that the internal energy is given by,

dU = T dS↓PdV +∀
i

µidNi. (104)

so we substitute this expression in and find,

dF = ↓SdT ↓PdV +∀
i

µidNi. (105)
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This indicates the definitions of the partial derivatives of the Helmholtz potential.

(
,F
,T

)

V ,N
= ↓S (106)

(
,F
,V

)

T ,N
= ↓P (107)

∀
i

(
,F
,Ni

)

T ,V
= µi. (108)

The enthalpy is found by taking the legendre transform of U by replacing V with P, and the Gibbs potential is found by
replacing S and V with T and P.

B.2.9 The Maxwell Relations

The Maxwell relations are simply a statement of the equality of the mixed partial derivatives of the fundamental relation.

, 2U
,S,V

=
, 2U

,V ,S
(109)

↓
(

,P
,S

)

V ,Ni

=

(
,T
,V

)

S,Ni

. (110)

Given a thermodynamic potential with (t + 1) natural variables, there are t(t+1)
2 separate pairs of mixed partial

derivatives and thus that many Maxwell relations.

B.2.10 Jacobian Transformations

An excellent method for manipulation of thermodynamic derivatives is based on the mathematical properties of
Jacobians. If u,v....w are functions of x,y, ...z, the Jacobian is defined as,

, (u,v, ...,w)
, (x,y, ...,z)

∋



,u
,x

,u
,y ... ,u

, z
,v
,x

,v
,y ... ...

,w
,x ... ... ,w

, z


. (111)

The property that makes this incredibly useful in thermodynamics is the relationship,

(
,u
,x

)

y...z
=

, (u,y, ...,z)
, (x,y, ...,z)

(112)

Jacobians have the following nice properties.

, (u,v, ...,w)
, (x,y, ...,z)

= ↓, (v,u, ...,w)
, (x,y, ...,z)

(113)

, (u,v, ...,w)
, (x,y, ...,z)

=
, (u,v, ...,w)
, (r,s, ..., t)

, (r,s, ..., t)
, (x,y, ...,z)

(114)

, (u,v, ...,w)
, (x,y, ...,z)

= 1/
, (x,y, ...,z)
, (u,v, ...,w)

. (115)
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B.2.11 The Nernst Postulate

The third law of thermodynamics, otherwise known as the Nernst postulate, states that,
Postulate B.5. The entropy of a system approaches a constant value at absolute zero temperature.

From a microstate perspective, at absolute zero temperature there is either only one unique microstate, known as the
ground state, or there are a set of minimum energy microstates, which are finite. An equivalent statement of the nernst
postulate is,
Postulate B.6. It is impossible by any procedure, no matter how idealized, to reduce the temperature of any closed
system to zero temperature in a finite number of finite operations.

Suppose that the temperature of a substance can be reduced in an isentropic process by changing the parameter X from
X2 to X1. One can think of a multistage nuclear demagnetization setup where a magnetic field is switched on and off in
a controlled way. If there were an entropy difference at absolute zero, T = 0 could be reached in a finite number of steps.
However, at T = 0 there is no entropy difference so an infinite number of steps would be needed.

B.2.12 Stability of Thermodynamic Systems

The requirement that the second derivative of energy be positive gives rise to some interesting findings. To see
this, let’s first construct an intrinsic system and a complimentary subsystem from a composite, isolated system. The
complimentary subsystem is assumed to be much larger than the intrinsic subsystem. The fundamental relation is given
by,

U ⇒ = Xtu(x0,x1, ...,xt↓1 + X̃t ũ(x̃0, x̃1, ..., x̃t↓1) (116)

where Xt represents some parameter of the fundamental relation that is being held constant. Furthermore, the smallness
of the intrinsic system compared to the complementary system requires that,

|dx̃i|<< |dxi|. (117)

Now, any changes in the xi leads to a total change in energy. We can express the energy change in terms of a Taylor
expansion such that,

∆U ⇒ = Xt [du+ d2u+ ...]+ X̃tdũ (118)

where,

du = ∀
i

,u
,xi

dxi (119)

d2u =
1
2! ∀

j
∀

i

, 2u
,xi,x j

dxidx j. (120)

We can neglect higher order terms of ũ since we are assuming that the changes in the independent variables are very
small for the complimentary system. Now, since the composite system is isolated, by our usual formalism the change in
internal energy for the composite system vanishes,

0 = Xt ∀
i

,u
,xi

dxi + X̃t ∀
i

, ũ
, x̃i

dx̃i. (121)

This leads us to the usual results that all of the intensive parameters (T, P, µi) are the same in each subsystem at
equilibrium. In other words, the composite system is homogeneous. However, we now turn our attention to the second
requirement; namely,

d2u =
1
2!


t↓1

∀
0

t↓1

∀
0

, 2u
,xi,x j

dxidx j


> 0. (122)
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The quantity in brackets is known as the homogeneous quadratic form. The condition that the quadratic form be positive
for all combinations of variables is referred to mathematically as the condition that the quadratic form be positive
definite.

Notice that we have numerous cross terms in the expression for d2u. The presence of these cross terms make it difficult
to determine what quantities must be positive, so we need to perform a linear transformation such that the quadratic
form is a sum of squares. Sylvester’s law of inertia guarantees that no matter which transformation we pick, the number
of positive, negative, and zero coefficients will be the same.

For this discussion, we will proceed by considering terms that contain dx0. We can thus express the equation as,

d2u =
1
2


u2

00(dx0)
2 ++2

t↓1

∀
1

, 2u
,x0,xk

dx0dxk +
t↓1

∀
1

t↓1

∀
1

, 2u
,xi,x j

dxidx j


> 0. (123)

We now eliminate the cross terms by introducing the new variable, dP0.

dP0 = u00dx0 +
t↓1

∀
1

u0kdxk (124)

(dP0)
2 = u2

00(dx0)
2 + 2u00

t↓1

∀
1

u0kdxk +
t↓1

∀
1

t↓1

∀
1

u0 ju0kdx jdxk (125)

which allows us to express the second derivative of internal energy as,

d2u =
1
2


1

u00
(dP0)

2 +
t↓1

∀
1

t↓1

∀
1
(u jk ↓

u0 ju0k

u00
)dx jdxk


> 0. (126)

Now, notice that the previous equation can be rewritten as,

d2u =
1
2


1

u00
(dP0)

2 +
t↓1

∀
1

t↓1

∀
1
(u jk)P0,x1,x2,...dx jdxk


> 0. (127)

We can rewrite this expression in a helpful way. Consider the following mathematical fact,

(
u jk ↓

u0 ju0k

u00

)
=

(
, 2(u↓P0x0)

,x j,xk

)

P0,x1,...
=

, 2. (0)

,x j,xk
. (128)

The function . (0) is the Legendre transform of u with respect to P0. This allows us to now write the second derivative
of u as,

d2u =
1
2


1

u00
(dP0)

2 +
t↓1

∀
1

t↓1

∀
1

. (0)
jk dx jdxk


> 0. (129)

Proceeding in this way, for each of the dxi, we arrive at a useful form given by,

d2u =
1
2

t↓1

∀
0

1

. ( j↓1)
j j

(dP( j↓1)
j )2 > 0. (130)

Thus, we require that all of the . ( j↓1)
j j be positive such that,

. ( j↓1)
j j =

(
,Pj

,x j

)

P0,P1...Pj↓1,x j+1,x j+2...xt↓1

> 0. (131)
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So, what exactly does this mean? Common terms that must be positive according to this definition are,

↓
(

,P
,V

)

T
> 0 (132)

(
,U
,T

)

v
=Cv > 0. (133)

Of course, depending on the complexity of the system, we can have many more relations from this procedure. However,
in fluid phase transitions, we are typically most concerned with the first of the two explicit equations and the second is
just assumed to be true.

B.3 Statistical Mechanics

B.3.1 Dynamical Variable Measurement

We have studied how particle positions and momenta evolve in time according to Hamilton’s equations of motion.
Of course, when dealing with real systems, we are almost never concerned with the motion of all of the particles
in the system and we know that materials can be well-described by simple thermodynamic laws. However, up to
this point, you may feel a bit uneasy that we have swept the dynamics of particles under the rug when we discussed
thermodynamics. So far, we collected all of the microscopic modes of energy transfer into the heat term and introduced
the entropy fundamental relation. From these very simple assumptions we have found that we can derive nearly all of
thermodynamics. But what is heat? Or entropy? To answer these questions, we need to study statistical mechanics. We
will see that statistical mechanics is a powerful tool to unite microscopic dynamics with macroscopic theory. Statistical
mechanics holds whether the system is classical or quantum mechanical, and has been applied to study systems as
diverse as molecular systems, black holes, and bird flocking.

Recall that a dynamical variable was some variable A = A(q f , p f , t). Let’s suppose that we want to measure the dynamic
variable in the lab. How do we actually define what the true value is? Is it the value of A at the specific instant in time
we measure it? How do we accommodate for the fact that A could be changing extremely fast due to atomic motions?

We can define the value of A as its average over the amount of time that the variable is measured. If the time scale of the
measurement is significantly larger than the time scale of molecular motion, the value of A that we measure will take
the form,

Aexp = lim
−⇓!

1
−

∫ t+−

t
A(q f (t ⇒), p f (t ⇒), t ⇒)dt ⇒ (134)

which is just an integral relation for the time average of A over a measurement time − . To see this, just consider that the
integral is equivalent to adding up all of the contributions to A over time and the 1/− term is dividing by the total time
of the measurement. The limit ensures that the time measurement is long enough to accurately capture the average.
This is analogous to taking an average of a set of measurements in which you add up all the measurement values and
divide by the number of samples.

B.3.2 Phase Space

The mechanical state of a system is specified by 2f variables; namely, the momentum and generalized coordinates of the
f particles in a system. The mechanical state comprises some specific point in this space, and we refer to this point as
the phase point. Over time, the phase point changes according to the equations of motion, and forms a phase trajectory.

B.3.3 Ensemble Average

Suppose that we allow some 1-D system to evolve over a time − . If we choose a volume element, then the probability
that the system phase is in the volume element is given by,

#dq f d p f = lim
−⇓!

∆t(q f , p f , t)
−

(135)

83



Uncertainty-Aware Liquid State Modeling from Experimental Scattering Measurements

where ∆t is the total time that the particle spends in the volume element. We call # = #(q f , p f , t) the probability density
function. Now, we can combine the dynamical variable measurement for the volume element with our probability
density definition to see that,

Aexp(t) =
∫

A(q f , p f , t)#(q f , p f , t)dq f d p f . (136)

Note that this integration occurs over the entire phase space. Furthermore, note that this equation only holds if explicit
time dependence of A occurs sufficiently slowly over − .

Since # is a probability density function, it has a few special properties:

1. # is a probability distribution function, so it must normalize to 1. This means that,

∫
#dq f d p f = 1 (137)

2. # must be non-negative so that, # ↘ 0.

It is very reasonable to question why we would rewrite our original expression with some new, seemingly not useful
function # . We haven’t really made too much progress computationally, as all we have done is rearranged the problem
with some new definitions. However, the hope is that by defining # in this way that we can find a # to use in eq (136)
that will allow us to solve for Aexp(t) without ever needing to solve the equations of motion directly. Furthermore, by
reformulating the motion of many-particles with respect to this probability density function, perhaps we can gain novel
insight that would otherwise be difficult to describe or notice.

B.3.4 Statistical Equilibrium

Statistical equilibrium occurs when the change in all measured dynamic variables with respect to time is zero, unless
the dynamic variable depends explicitly on time. This implies that at equilibrium A = A(q f , p f ), where the explicit
time-dependence is dropped. Thus,

dAexp

dt
= lim

∆t⇓0

1
∆t

[∫
A(q f , p f )[#(q f , p f , t +∆t)↓#(q f , p f , t)]

]
dq f d p f (138)

and applying a first-order Taylor expansion on the probability density function gives,

dAexp

dt
= lim

∆t⇓0

∫
A(q f , p f )

,#
, t

dq f d p f . (139)

Therefore, the condition of statistical equilibrium is that # does not depend explicitly on time, or,

,#
, t

= 0. (140)

Since the previous expression must hold for any choice of A.

B.3.5 The Statistical Ensemble

The concept of a statistical ensemble was introduced by Gibbs. Let’s suppose that we make N identical copies of a
system, and we completely transfer the explicit time dependence and Hamiltonian for each copy. This is known as the
statistical ensemble. Now, the number of copies of the system that fall in the volume element dq f d p f is given by,

N #(q f , p f , t)dq f d p f . (141)

This represents the number of copies in the phase space around the point (q f , p f ). Noting that copies of the system are
neither generated nor destroyed in this process, the total copy density N# is conserved.

84



Uncertainty-Aware Liquid State Modeling from Experimental Scattering Measurements

B.3.6 Louiville’s Theorem and the Canonical Ensemble

Recall the equation of continuity from continuum mechanics. The equation of continuity amounts to writing down a
mass balance on a system noting that the total mass of a system is conserved. For some fixed region of space, referred
to as a control volume, the number of particles in the control volume at any moment t is given by,

∫

V
#(r, t)dr (142)

where V denotes the control volume and #(r, t) is the number density of particles at position r at time t. If there are
no chemical reactions, the rate of change of this integral with respect to time is related to the flux of atoms across the
surface of the control volume so that,

d
dt

∫

V
#(r, t)dr =



S
#(r, t)v(r, t) ·n(r)dS (143)

where v is the average velocity of particles through the surface element dS and n(r) is the outward unit normal to the
control volume surface. We can rewrite the left hand side using the Leibniz integral rule (which can be proved by
invoking the bounded convergence theorem) such that,

d
dt

∫ b(r)

a(r)
#(r, t)dr = #(r,b)

db(r)
dt

↓#(r,a)
da(r)

dt
+

∫ b(r)

a(r)

,
, t

#(r, t)dr (144)

where the first two terms go to zero since a(r),b(r) are fixed in time (control volume cannot deform). We then obtain,

d
dt

∫

V
#(r, t)dr =

∫

V

,
, t

#(r, t)dr. (145)

Now, the term on the right hand side can be rewritten according to the divergence theorem,



S
#(r, t)v(r, t) ·n(r)dS =

∫

V
∃ · (#v)dr (146)

which after plugging into our original expression and rearranging under the integral we obtain,

∫

V

,#
, t

+∃ · (#v)dr = 0. (147)

But since this holds for any V , we must have,

,#
, t

+∃ · (#v) = 0. (148)

This is an expression for the equation of continuity in continuum mechanics. By analogy, in phase space we have a
control volume in 2 f -coordinates (q1, ...,q f , p1, ..., p f ) and velocities (q̇1, ..., q̇ f , ṗ1, ..., ṗ f ) with a total number density
of N # . Plugging these into the equation of continuity gives,

,N #
, t

+
f

∀
i=1

[
, (N # q̇i)

,qi
+

, (N # ṗi)
, pi

]
= 0. (149)

We note that N is a constant and apply Hamilton’s equations of motion to find,

,#
, t

+
f

∀
i=1

[
,

,qi

(
# ,H

, pi

)
↓ ,

, pi

(
# ,H

,qi

)]
= 0 (150)

which implies that,

85



Uncertainty-Aware Liquid State Modeling from Experimental Scattering Measurements

d#
dt

=
,#
, t

+ {# ,H}= 0 (151)

or in other words, that # is a constant of motion. This means that the number of copies in a statistical ensemble is
conserved. This is a statement that holds whether or not the system is in statistical equilibrium or not. However, we now
require that the probability be a constant of motion with respect to the Hamiltonian and that it not depend explicitly on
time in order for the system to be in statistical equilibrium.

B.3.7 An Expression for Density

So now the question becomes: how do we express # in a productive way? What functional form does it take? We first
make an assumption that # = #(H) only. Now, we proceed to hypothesize that # takes the following form,

#(q f , p f ) =
1
C

e↓&H(q f ,p f ) (152)

where C is determined by the normalization condition such that,

1 =
∫

#(q f , p f )dq f d p f =
∫ 1

C
e↓&H(q f ,p f )dq f d p f . (153)

The statistical ensemble characterized by a # of this form is referred to as the canonical ensemble. The ensemble
average of the energy H is called the internal energy (U), and is given by,

U ∋ →H↑=
∫

H#(q f , p f )dq f d p f (154)

where all we have done is used new notation for the same integral we introduced earlier when we discussed ensemble
averages,

→A↑=
∫

A(q f , p f )#(q f , p f )dq f d p f =
1
C

∫
A(q f , p f )e↓&H(q f ,p f )dq f d p f (155)

for the given form of # . We now have an expression for U in terms of the microscopic quantities from statistical
mechanics. However, we also have an expression for U in thermodynamics; namely,

dU = T dS↓PdV (156)

which will allow us to relate the thermodynamic concepts of temperature, entropy, and work to the microscopic
expression for U . To do this, we let Θ = &↓1 and rewrite the canonical ensemble probability density in terms of H,

H = ↓Θlog(#)↓Θlog(C). (157)

Taking the ensemble average of these quantities gives,

U = Θ+ +% (158)

where we have defined two new variables given by,

+ = ↓→log(#)↑ (159)

% = ↓Θlog(C). (160)

Taking the total derivative of U we find that we can express dU as,

dU = +dΘ+Θd+ + d% (161)
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B.3.8 Intuition Using a Piston Cylinder

We now need to expand the d% term in a systematic way so that we can compare this expression with the one we are
familiar with from thermodynamics. To this end, we consider an example system of particles confined to a piston
cylinder device. How do we write H for this system? H is a function of the particle velocities, interactions, and piston
position (since it imparts an external force on the system), which we can write as,

H =
N

∀
i=1

||pi||2

2mi
+/ (rN)+.(rN ,) ) (162)

where ) is the position of the piston and is common to all particles in the system. The point here is that we can perform
work on the system by changing ) and that the Hamiltonian is a function of ) . From the normalization condition we
have that C =C(Θ,) ). The total derivative of C is then,

dC =

(
,C
, Θ

)

)
dΘ+

(
,C
,)

)

Θ
d) (163)

and we also know from our definition of % that,

d% = ↓Θd logC↓ logCdΘ = ↓Θ
dC
C

↓ logCdΘ (164)

and rewriting this expression by plugging in for dC and logC = ↓%/Θ gives,

d% =

[
%
Θ

↓ Θ
C

(
,C
, Θ

)

)

]
dΘ↓ Θ

C

(
,C
,)

)

Θ
d) . (165)

Now, let’s rewrite these partial derivatives with respect to the integral of the probability density function. This gives,

1
C

(
,C
, Θ

)

)
=

1
C

,
, Θ

∫
e↓H/Θdq f d p f =

1
C

∫ ,
, Θ

e↓H/Θdq f d p f (166)

and taking the derivative of the inside gives,

=
1
C

∫ H
Θ2 e↓H/Θdq f d p f =

U
Θ2 . (167)

Similarly,

1
C

(
,C
,)

)

Θ
=

1
C

,
,)

∫
e↓H/Θdq f d p f =

1
C

∫ ,
,)

e↓H/Θdq f d p f (168)

which is just,

=
1
C

∫
↓ 1

Θ
,H
,)

e↓H/Θdq f d p f = ↓ 1
Θ

〈
,H
,)

〉
. (169)

Combining these expressions into our expression for d% ,

d% =

[
%
Θ

↓Θ
U
Θ2

]
dΘ+Θ

1
Θ

〈
,H
,)

〉
d) =

1
Θ
(% ↓U)dΘ+

〈
,H
,)

〉
d) (170)

and finally substituting in our original expression for U = Θ+ +% we obtain,

dU = Θd+ +

〈
,H
,)

〉
d) . (171)
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Thus, we find that the first term is related to T dS and the second term is related to the work done on the system. The
fact that T dS = Θd+ means that,

Θ # T (172)

d+ # dS. (173)

We choose the constant of proportionality as the Boltzmann constant, kB, so that,

d+ = d
(

S
kB

)
(174)

which implies that a functional form for the entropy in terms of classical statistical mechanical variables is,

S = ↓kB→log(#)↑. (175)

Also note that we have the relation for % given by,

% =U ↓Θ+ =U ↓T S = A. (176)

This gives us an approximate form for the Helmholtz free energy as,

A = ↓kBT log(C). (177)

B.3.9 Motivation for the Canonical Ensemble

The previous section gave a definition for & as,

& =
1

kBT
. (178)

In the canonical ensemble definition for the probability of observing a particle in some volume element around the
point (q f , p f ), we now have,

#(q f , p f ) =
1
C

e↓H(q f ,p f )/kBT . (179)

But this means that the temperature of the system must be specified to determine # . To do this in practice, we need
to allow for transfer of energy with a system and its surroundings. In fact, we now show that the canonical ensemble
is the only possible ensemble that can account for a system in thermal contact with its surroundings. Let T be an
isolated system containing a subsystem S enclosed in a rigid, impermeable wall, surrounded by subsystem L called
the surroundings. The Hamiltonian of the system can be written as,

HT (qm+n, pm+n) = HS (qm, pm)+HL (qn, pn)+Hint(qm+n, pm+n). (180)

The last term arises from the interactions between the subsystem S and the surroundings L . m,n are the mechanical
degrees of freedom of S and L , respectively. We need to assume that the internal interaction Hamiltonian is negligible
in magnitude compared to the subsystem and surroundings Hamiltonian’s; meaning,

HT (qm+n, pm+n) ↗ HS (qm, pm)+HL (qn, pn). (181)

This implies that the interaction between S and L is weak, but still sufficient to allow for a transfer of energy between
the two systems over a long period of time. This transfer of energy is sufficient to maintain a constant temperature
without contributing significantly to the total Hamiltonian.

We now split the subsystem S into two sub-subsystems A and B, with mechanical degrees of freedom mA and mB,
such that m = mA +mB. We now suppose the interactions between these two are sufficiently weak so that,
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HS (qm, pm) ↗ HA(qma , pma)+HB(qmb , pmb). (182)

This approximate independence implies that,

#S ↗ #A#B (183)

since independent probabilities can be multiplied together to give the total probability. Taking the logarithm of both
sides gives,

log(#S ) ↗ log(#A)+ log(#B). (184)

However, we know from Liouville’s Theorem that # is a function of constants of motion. We also now know that the
logarithm of # is additive. This necessarily implies that log(#) is a linear function of constants of motion that are
additive. If we assume that # = #(H), we will obtain the following expression,

log(#) = mH + b (185)

# = ebemH (186)

which is precisely the form of the canonical distribution function supposed earlier. You may wonder why we can still
apply Liouville’s theorem here since the system in thermal contact is not isolated. The reason for this is that over a
small time interval, if the interactions between systems are sufficiently weak, then the system will behave approximately
isothermally over that time. If we stitch together a large number of these time intervals, we expect to find the canonical
distribution.

B.3.10 The Maxwell-Boltzmann Distribution

One application is to find the distribution of momentum of a particle in a system of N particles held in thermal
equilibrium with its surroundings. In the absence of an external field, we can write the Hamiltonian for such as a system
as,

H(rN ,pN) =
N

∀
i=1

||pi||2

2mi
+/ (rN) (187)

where / (rN) is recognized as the particle interaction potential energy contribution. To find the probability distribution
on the velocity of a single particle, we can proceed to integrate out all position and momentum coordinates except for a
single arbitray particle to obtain,

#(p1)dp1 (188)

which is just the momentum probability density function for a single particle. Proceeding in this way, let’s start with the
partition function in the canonical ensemble,

#drNdpN =
1
C

∫
e↓&HdrNdpN (189)

and substituting H into the equation we get,

#drNdpN =
e
↓&

(
∀N

i=1
||pi ||2

2mi
+/ (rN )

)


e
↓&

(
∀N

i=1
||pi ||2

2mi
+/ (rN )

)

drNdpN

. (190)

We can begin by solving for C to obtain,
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C =
∫

e
↓&

(
∀N

i=1
||pi ||2

2mi
+/ (rN )

)

drNdpN =
∫ N

%
i=1

e↓& ||pi ||2
2mi dpN

∫
e↓&/ (rN )drN (191)

which is equal to,

C =
N

%
i=1

(
2∀mi

&

)3/2 ∫
e↓&/ (rN )drN . (192)

Recognizing that we now just need to take the integral over #drNdpN with respect to all variables but a single
momentum, we obtain,

C
∫

#drNdpN↓1 =
∫

e
↓&

(
∀N

i=1
||pi ||2

2mi
+/ (rN )

)

drNdpN↓1 (193)

which gives,

C#(p1)dp1 =
N↓1

%
i=1

(
2∀mi

&

)3/2

e↓& ||p1 ||2
2m1 dp1

∫
e↓&/ (rN )drN (194)

and finally dividing by C on both sides,

#(p1)dp1 =
%N↓1

i=1

(
2∀mi

&

)3/2

e↓& ||p1 ||2
2m1 dp1


e↓&/ (rN )drN

%N
i=1

(
2∀mi

&

)3/2 
e↓&/ (rN )drN

(195)

or equivalently,

#(p1)dp1 =

(
1

2m1∀kBT

)3/2

e↓& ||p1 ||2
2m1 dp1. (196)

This is known as the Maxwell-Boltzmann distribution.

B.3.11 The Equipartition Theorem

You may have noticed in previous examples that each quadratic term in positions or momenta contribute a factor of
&↓1/2 to the partition function. This implies that each quadratic term makes a contribution of kBT /2 to the total energy.
Let’s generalize this observation here by writing our Hamiltonian in the following form,

H(q f , p f ) = aq2
1 + h(q2, ...,q f , p1, ..., p f ) (197)

and computing the canonical ensemble average of aq2
1. We proceed by writing,

→aq2
1↑=

1
C

∫
aq2

1e↓&aq2
1e↓&hdq f dp f =

a
C

√
∀

4(&a)3

∫
e↓&hdq f ⇐=1dp f (198)

but C is equal to,

C =
∫

e↓&aq2
1e↓&hdq f dp f =

√
∀

&a

∫
e↓&hdq f ⇐=1dp f (199)
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which means that,

→aq2
1↑=

a
√

∀
4(&a)3


e↓&hdq f ⇐=1dp f

√
∀

&a


e↓&hdq f ⇐=1dp f
=

1
2

&↓1 =
1
2

kBT . (200)

Now, this result can be trivially generalized to Hamiltonian’s of the form,

H(q f , p f ) =
f

∀
i=1

(aiq2
i + bi p2

i ) (201)

to show that U = f kBT . This idea that the energy of a system is equally partitioned amongst each degree-of-freedom in
the system is called the equipartition theorem.

B.3.12 Corrections from Quantum Mechanics

We derived an equation for the Helmholtz energy using classical statistical mechanics for a particle in a box. However,
we need to extend this to a general argument and introduce quantum mechanical corrections to the determined equation.

Suppose we have N identical particles (mi = m j) in a rectangular box of dimension Lx,Ly,Lz. The Hamiltonian is given
by,

H(rN,pN) =
N

∀
i=1

||pi||2

2m
+.w(rN) (202)

such that .w represents the interactions of the particles with the walls of the box. We can determine C by integrating
e↓&H over all of phase space according to,

C =
∫ !

↓!

∫ !

↓!
...
∫ !

↓!
e↓&Hdx1dy1dz1dx2...dzNd px1d py1...d pzN (203)

where the integrals span the 6N-dimensional phase space. Solving this integral we find that,

C = V N
(

2∀m
&

)3N/2

. (204)

When we apply this to our equation for the Helmholtz energy, we find that,

F = ↓kBT log

(
V N

(
2∀m

&

)3N/2
)
= ↓kBT

[
N log(V )+

3N
2

log(2∀mkBT )
]

. (205)

Now, we need to look at this function and see if it makes sense according to classical thermodynamics. The first thing to
check is if F is extensive so that F(T ,)V ,)N) = )F(T ,V ,N). Begin by substituting V and N for )V and )N so that,

F = ↓kBT
[

)N log()V )+
3)N

2
log(2∀mkBT )

]
(206)

which gives,

F = ↓)kBT
[

N log()V )+
3N
2

log(2∀mkBT )
]
⇐= )F(T ,V ,N). (207)

Therefore, we find that F is not extensive! This means that the statistical mechanics that we have developed is
inconsistent with thermodynamics. The problem isn’t with what we did, but rather how we started; namely, with
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classical mechanics. Atoms and particles are governed by quantum mechanics, and therefore we must introduce some
corrections.

Indistinguishable Particles

In classical mechanics, every particle is distinguishable from every other particle. In fact, we reasoned that we can
track the position and velocity of every particle in a system and see how those variables evolve according to Newton’s
equations of motion. According to quantum mechanics, however, this can’t be done even in principle! In quantum
mechanics, identical particles are fundamentally indistinguishable, and therefore no computation or experiment can
ever be devised to distinguish between them. This means that when we perform the integral over phase space when we
calculate C that we are actually over counting the number of states. To adjust for this, we just need to divide by the
number of ways of labeling the particles, which is just related to the factorial operator. We therefore divide C by this
degeneracy factor so that,

C⇒ =
1

N!

∫
e↓&H(q f ,p f )dq f d p f . (208)

Let’s now check if F is extensive. We know that F = ↓kBT logC⇒, which is given by,

F = ↓kBT
[

N log(V )+
3N
2

log(2∀mkBT )↓ logN!
]

(209)

for which we can apply Sterling’s approximation, logN! = N logN ↓N for sufficiently large N,

F = ↓kBT
[

N log(V )+
3N
2

log(2∀mkBT )↓N logN +N
]

. (210)

We now make the substitution V and N for )V and )N so that,

F = ↓kBT
[

)N log()V )+
3)N

2
log(2∀mkBT )↓)N log()N)+)N

]
(211)

which is,

F = ↓)kBT
[

N log(V )+
3N
2

log(2∀mkBT )↓N log(N)+N +!!!!!!!
(log) ↓ log) )

]
(212)

showing that,

F(T ,)V ,)N) = )F(T ,V ,N) (213)

for our new expression C⇒.

The Heisenberg Uncertainty Principle

To this point, we have taken integrals over infinitesimally small regions of the phase space in position and momenta,
which violates the uncertainty principle. The uncertainty principle demands that a simultaneous measurement of
position and momentum satisfies,

(∆q)(∆p) ↔ h (214)

where h is Planck’s constant in units of action (distance times momentum or equivalently energy times time). To think
about how the uncertainty principle influences our normalization factor C, consider what happens when we take a phase
space integral in classical mechanics. The integral,

C =
∫

p

∫

q
e↓&Hdqd p (215)
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assumes that all states inside the infinitesimal box dqd p are distinguishable states and they all contribute to C. In reality,
we only have distinguishable states up to the phase space volume h, so the integral should be written as,

C =
1
h

∫

p

∫

q
e↓&Hdqd p. (216)

For f degrees-of-freedom, the integral then becomes,

C =
1
h f

∫

p f

∫

q f
e↓&Hdq f d p f (217)

which for N particles in a three-dimensional space gives,

C =
1

h3N

∫

p f

∫

q f
e↓&Hdq f d p f . (218)

Finally, combining our results from particle indistinguishability and the uncertainty principle gives the correct definition
for the canonical partition function,

Z =
1

h3NN!

∫
e↓&Hdq f d p f . (219)

These corrections essentially amount to preventing over-counting of true quantum states with classical mechanical
integrals.

B.3.13 Canonical Ensemble

A canonical ensemble is a collection of systems that have the same values of N, V , and T and evolve according to
the same Hamiltonian. It therefore represents a system at thermal equilibrium with its surroundings. In the canonical
ensemble, we then argued that the equilibrium probability density for a system of identical particles is,

#(q f ,p f ) =
1

h3NN!
1
Z

e↓&H (220)

where Z is the canonical partition function given by,

Z =
1

h3NN!

∫
e↓&Hdq f dp f . (221)

We then found that we could derive the free energy (Helmholtz for an NV T system) in the following way,

F =U ↓T S = ↓kBT logZ (222)

and derive important relationships like,

→H↑=U = ↓
(

, logZ
,&

)

V
(223)

or,

P = kBT
(

, logZ
,V

)

T ,N
. (224)

The canonical ensemble describes systems that can exchange heat with the surroundings but not volume or matter.
However, the canonical ensemble is just one type of system that is relevant to real systems. It doesn’t take that
much imagination to consider a system which can not only exchange heat (and thus equilibrate temperature with its
surroundings) but also exchange volume or particles. These ensembles will have different probability density functions,
free energies, and mathematical relationships.
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B.3.14 The Isothermal-Isobaric Ensemble

The isothermal-isobaric ensemble is the same as a canonical ensemble aside from the pressure being held constant
instead of volume. Therefore, we refer to the isothermal-isobaric ensemble as the NPT ensemble. The free energy for
an NPT system is the Gibbs free energy (as an exercise, perform a partial Legendre transform of internal energy U to
convert S ⇓ T and V ⇓ P) such that,

G =U ↓T S+PV (225)

which can be related to statistical mechanics through the probability distribution function,

#(q f ,p f ;N) =
1

h3NN!
1

∆N
e↓& (H+PV ) (226)

where ∆N is the isothermal-isobaric partition function,

∆N =
1

h3NN!V0

∫ !

0
dV

∫
e↓& (H+PV )dq f dp f (227)

which can be interpreted as the volume average of canonical ensembles with weight e↓&PV . The Gibbs free energy is
then,

G = ↓kBT log∆N . (228)

The isothermal-isobaric ensemble describes many experiments that are performed at constant temperature and pressure
and is useful for determining the equation of state of fluids near atmospheric conditions.

B.3.15 The Grand Canonical Ensemble

The thermodynamic state of a system that is open, or able to exchange particles with its surroundings, is characterized
by the grand potential (as an exercise, try the partial Legendre transform U exchanging N ⇓ µ and S ⇓ T ),

Ω =U ↓T S↓Nµ . (229)

An ensemble of systems having the same values of chemical potential, volume and temperature (µV T ) is referred to as
a grand canonical ensemble. The phase space of the grand canonical ensemble is essentially just the union of canonical
ensembles for every possible value of N. In this way, the probability distribution function is written as,

#(q f ,p f ;N) =
1

h3NN!
1
Ξ

e↓& (H↓Nµ) (230)

where Ξ is the grand canonical partition function,

Ξ =
!

∀
N=0

e&Nµ

h3NN!

∫
e↓&Hdq f dp f . (231)

The grand canonical ensemble is used in molecular simulations for vapor-liquid equilibria and adsorption processes.

B.3.16 General Rules of Statistical Ensembles

The problem of statistical mechanics amounts to counting - or to cleverly avoid counting - the number of equally
probable ways that a system can divide up its energy. The partition function is precisely this number, so if the partition
function is known for a given ensemble, we can calculate the free energy and in principle have complete knowledge
of system thermodynamics. Thus, if Q is some partition function for a given ensemble, we can always compute the
corresponding free energy using the relation,

FE = ↓kBT logQ. (232)

94



Uncertainty-Aware Liquid State Modeling from Experimental Scattering Measurements

Additionally, the probability distribution function for a given ensemble can allow us to calculate moments of some
dynamic variable according to the equation,

→A↑= 1
h3NN!

1
Q

∫
#Adq f dp f (233)

regardless of the ensemble. Although we will not explore any other ensembles here, there are many described in the
literature that must be considered in certain cases. It is therefore crucial to analyze the physical system that you want to
model and determine whether or not a certain ensemble is appropriate for the target application.

B.3.17 Inverse Kirkwood-Buff Theory

The Kirkwood-Buff solution theory was presented in a landmark paper in 1951. The theory relates particle number
fluctuations in the grand canonical ensemble to integrals of the radial distribution function. In this short introduction to
the topic, we will introduce the statistical mechanics required to understand Kirkwood-Buff solution theory as well as
provide details on the numerical computation of the Kirkwood-Buff integrals from experimental data.

An ensemble of systems that have constant chemical potential, volume, and temperature belong to the so-called grand
canonical ensemble. Recall that in the canonical ensemble (constant number of particles, volume, and temperature), the
probability distribution function is given by the Boltzmann distribution,

p(rN,pN) =
1

h3NN!
e↓&H

Z
(234)

where Z is the canonical partition function,

Z =
1

h3NN!

∫ ∫
exp(↓&H )drdp (235)

that can be directly related to classical thermodynamics by its relation to the Helmholtz free energy,

F = ↓kT log(Z). (236)

The grand canonical ensemble is just an expansion on the concept of the canonical ensemble; in fact, the grand canonical
ensemble is just the union of canonical ensembles with different values for the number of particles N. Therefore the
probability distribution function is just a Boltzmann distribution with an additional contribution from the number of
particles and chemical potential,

p(rN,pN,N) =
e↓& (H ↓Nµ)

Ξ
(237)

where the Ξ is the grand partition function,

Ξ =
!

∀
N=0

exp(N& µ)
h3NN!

∫ ∫
exp(↓&H )drNdpN (238)

where the sum spans over all possible numbers of particles that the constant µV T system can exist in. Just as in the
canonical ensemble, we can take averages of any quantity-of-interest with respect to the grand canonical ensemble by
taking the product of the actual observable A by its corresponding probability and integrating over the entire phase
space,

→A↑=
!

∀
N=0

1
h3NN!

∫ ∫
A(rN,pN)p(rN,pN,N)drNdpN . (239)

The final piece we need is a relation between the averages of the number of particles. Looking at the partition function
Ξ, we can see that differentiation with respect to µi will give us the following expression,
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, Ξ
, µi

=
!

∀
N=0

Ni
exp(N& µ)

h3NN!

∫ ∫
exp(↓&H )drNdpN = & Ξ→Ni↑. (240)

Similarly,

, 2Ξ
, µi, µ j

=
!

∀
N=0

NiNj
exp(N& µ)

h3NN!

∫ ∫
exp(↓&H )drNdpN = & 2Ξ→NiNj↑. (241)

But we can also consider the second derivative of the partition function in an equivalent way,

, 2Ξ
, µi, µ j

=
,

, µ j
& Ξ→Ni↑= &

(
→Ni↑

, Ξ
, µ j

+Ξ
, →Ni↑
, µ j

)
(242)

= &
(

& →Ni↑→Nj↑Ξ+Ξ
, →Ni↑
, µ j

)
. (243)

Equating the two expressions gives,

& 2Ξ→NiNj↑= &
(

& →Ni↑→Nj↑Ξ+Ξ
, →Ni↑
, µ j

)
(244)

→NiNj↑↓→Ni↑→Nj↑= &↓1 , →Ni↑
, µ j

. (245)

B.3.18 The Ornstein-Zernike Equation

In Ornstein and Zernike’s seminal work, Accidental deviations of density and opalescence at the critical point of a
single substance, in: KNAW, Proceedings, 17 II, 1914, pp. 793-806, it was shown that the total correlation between
molecules in a statistical mechanical system must obey an integral equation of the form,

h(r12) = c(r12)+ n
∫

dr3c(r13)h(r23) (246)

where h(ri j) is the total correlation function between particles i and j (note that h(ri j) = g(ri j)↓1, where g(ri j) is the
more familiar radial distribution function) and c(ri j) is the ’direct’ correlation between particles i and j. In this article, I
will try and demystify this equation using physical arguments from Ornstein and Zernike’s original paper as well as the
more recent formulations described in Liquid State Theory from Hansen and McDonald as well as Santos’ A Concise
Course on the Theory of Classical Liquids.

The motivation for Ornstein and Zernike’s work was from an original paper on critical behavior of statistical mechanical
systems from Smoluchowski, with the main problem being that his volume elements, of which he used to partition
up a system of particles, were assumed to be mutually independent of one another. At this stage, the whole premise
might already sound a little fishy. We know that liquids interact with each other strongly, so of course this mutual
independence assumption must be a problem. Why are we even talking about volume elements in the first place? And
what is meant by their mutual independence?

Ornstein and Zernike implore us to consider a statistical mechanical system composed of a finite set of volume elements
containing a finite number of particles so that the total volume V is,

V = v1 + v2 + ... (247)

and the total number of particles N is,

N = n1 + n2 + ... (248)

Nice! Intuitively, all we have done is taken a system of particles and discretized the position space into finite volume
elements which contain a finite set of particles. Of course, in an atomic systems the particles are always moving, and
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indeed, always passing from one volume element to another. In general, we will say that the mean square deviation
of the number of particles in a given volume element vi based on the atomic motion is, (ni ↓ n̄i)2. If the number of
particles in the element of volume is large, then this mean square deviation is approximately equal to the variance of
the number of particles in the volume element. If we consider that our atomic system is a subsystem of some larger
collection of particles, then we can express the mean number of particles in our system N̄ as the sum of the mean
number of particles in each volume element so that,

N̄ = n̄1 + n̄2 + ... (249)

and therefore the mean square deviation of the number of particles in our system is,

(N ↓ N̄)2 = [n1 + n2 + ...↓ (n̄1 + n̄2 + ...)]2 = [(n1 ↓ n̄1)+ (n2 ↓ n̄2)+ ...]2 (250)

which has a complicated expansion given by,

= (n1 ↓ n̄1)2 +(n2 ↓ n̄2)2 + ...+(n1 ↓ n̄1)(n2 ↓ n̄2)+ (n1 ↓ n̄1)(n3 ↓ n̄3)+ ... (251)

and, assuming that the cross correlations are not related and that the number of particles are equal across all of the
volume elements (in which we will say there are p in total) gives,

= p(n↓ n̄)2 (252)

The biggest problem here is the cross terms which appear in our expansion (eq (251)), are at odds with a mutual
independence approximation. Indeed, if the system were truly independent, then there would be no contribution to the
mean square deviation from pairs of different volume elements. This forms the key difference between Ornstein and
Zernike’s formulation and that of Smulochowski.

The Ornstein-Zernike Equation Now, consider that we take our system and subdivide into an infinite number of
volume elements and select one to be our reference, dv0. We want to ask how fluctuations in our local volume element
dv0 influence the densities of all other volume elements in the system, which is of course related to how much the
particles in our reference volume interact with all the other particles. On average, we claim that the average density in
our volume element, v̄0, is linearly related to the density in all other volume elements so that,

v̄0 = f1v1dv1 + f2v2dv2 + ... (253)

where fi are coefficients of the linear equation relating the local density to that of the other volume elements. Generally,
we could write this expression as a Taylor expansion over terms of increasing order, although Ornstein and Zernike
claim that the linear term is sufficient for their purposes. Although we will table this for now, it is an interesting question
as to whether such an expansion is truly sufficient for statistical mechanics of liquids and whether or not this causes
issues with the OZ relation methods. Moving on, we assume that this function is continuous and well-behaved over the
so-called ’sphere of attraction’ of the system, so we can rewrite this sum as an integral of continuous functions such that,

v̄0 =
∫

f (r)v(r)dr. (254)

where the integral is understood to go over all of r. Note that the ’sphere of attraction’ simply refers to the range
of direct influence of the particles of dv0 on the other particles in the system. We would expect such a sphere to be
finite, since the direct influence of particles in our reference volume is an interatomic potential that is at its strongest
Coulombic with # 1/r dependence. However, note that this assumption leads to difficulties with the Fourier transform
(see section B.3.18). More generally however, the function v(r) is not actually continuous if we consider that the
particles are point particles, the reason being that if we create an infinite number of volume elements for the system that
there will be some volume elements with particles and others with none. Such a problem is avoided by rewriting the
expressions in terms of a new function which will be introduced later. However, in Ornstein and Zernike’s original
work, there is not a satisfactory discussion of why such a function should be continuous at all, which would require
further nuance and discussion found in the free energy functional approach discussed later.

Let us now suppose that the density in our volume element is known to be v0 and write the average density at any other
point in space as,
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v̄(r) = g(r,v0dr0) (255)

the function g being dependent on, of course, the position in the system and choice of reference. What then is g given
that we know f ? Selecting a known value of v1 at r1 would give us a g of,

v̄(r) = g(r↓ r1,v1dr1) (256)

which is just the definition of g selected at a point shifted in space from our original reference. The average value at r0
is then simply,

v̄0(r) = g(r1,v1dr1) (257)

Applying the original integral with an assumed known f is then,

g(r1,v1dr1) =
∫

r⇐=r1
f (r)g(r↓ r1,v1dr1)dr+ f (r1)v1dr1. (258)

where the integral contribution at the selected particle position r1 is written explicitly outside of the integral (known
from the linear approximation to the Taylor expansion above) since g is not defined there. Finally, note that this must be
true for any choice of v1dr1 and that g is linear in vidri (eq (253)), meaning that we can pull out a factor of v1dr1 for
both instances of g so that,

g(r1) =
∫

r ⇐=r1
f (r)g(r↓ r1)dr+ f (r1). (259)

In modern symbols, the g is actually just the total correlation between densities in volume elements of the system,
which we write as h, and f represents the direct coupling between volume elements, which we write as c. In modern
symbols, the Ornstein-Zernike equation emerges,

h(r1) =
∫

r ⇐=r1
c(r)h(r↓ r1)dr+ c(r1). (260)

Physical Interpretation What exactly does eq (260) mean? Starting with the total correlation function h(r1), we
notice that this function is simply the average particle density of the system at position r1 within a spherical coordinate
system,

Figure 40: The total correlation function, h(r1), is just the average density at any point in space away from the origin,
O .
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According to the Ornstein-Zernike equation, this total correlation function is fully described by three functions: the
direct correlation function c(r1), the direct correlation function c(r), and the total correlation function h(r↓ r1). These
functions only make sense when we consider that the integral will go over all of the other volume elements of the
system, specifically for all r ⇐= r1. Our new picture is then,

Figure 41: The new vector r is of course integrated over all values of r.

Now let’s consider each of the terms. The direct correlation function c(r1) is a function of linear coupling constants
which relate the particle density at the origin to all other volume elements in the system. There are no cross terms in the
expansion, so this function only keeps track of the ’direct’ coupling between volume elements, hence the name. c(r1) is
therefore the direct coupling between the reference origin and some other volume element. The other direct correlation
function c(r) has the same interpretation, but now it represents the direct coupling between the reference and a different
volume element not centered at r1. Finally, the total correlation h(r↓ r1) is just the density of a volume element from
the reference volume element between the difference in the vectors r↓ r1.

Finite f (r) Leads to Nonphysical Fourier Transforms There are some problems with the mathematical development
presented by Ornstein and Zernike. In a short phone call with Harry W. Sullivan, who just traveled to University of
Minnesota to start a doctoral program, it was noted that the assumption of a cut-off in c(r) may actually be at odds with
Fourier representations of the total correlation function. To see this, consider that the modified Henkel transform (or
spherical Bessel transform) of the real-space total correlation function is directly related to the total structure factor,
a quantity which is observable experimentally via scattering experiments. Thus, assuming that the total correlation
function is isotropic, we can write the modified Henkel transform of the total correlation function as,

ĥ(q) =
∫ !

0
h(r)Jr(qr)rdr (261)

where Jr is the Bessel function of the first kind of order r. If there is a point at which the total correlation abruptly
becomes zero at some rmax, then, expanding h(r) in a Fourier Bessel series gives,

ĥ(q) =
∫ rmax

0

!

∀
n=1

cnJr

(
Ur,n

rmaxr

)
Jr(qr)rdr (262)

where cn are constants and Ur,n is the nth root of the Bessel function. The sum and integral can be exchanged since they
are linear, giving the following,

ĥ(q) =
!

∀
n=1

cn

∫ rmax

0
Jr

(
Ur,n

rmaxr

)
Jr(qr)rdr (263)
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which has as a solution a delta-train,

ĥ(q) =
!

∀
n=1

cn∃
(

Ur,n

rmax
↓q

)
rmax

Ur,n
(264)

This result, of course, is at odds with experimental measurement of the total structure factor and with physical intuition
of the problem. Hence, the abrupt sending of the function c(r) to zero is not a mathematically reasonable assumption to
describe the theory of liquids.

Conclusions from Ornstein and Zernike’s Original Work In summary, Ornstein and Zernike’s original paper is a
work of genius that resulted in an integral relation that has remained relevant to liquid state physics for over a century.
Indeed, reading this manuscript one gets the sense that the authors did not understand how monumental this work
would become in the development of modern physics. However, the mathematical development in their manuscript is
not rigorous and therefore encounters some potential pitfalls, but nonetheless was later verified to be correct anyway
without the shaky assumptions that derail the extensibility of their method.

The Gibbs Interpretation One of the great issues with Ornstein and Zernike’s original derivation is that the direct
correlation function is constructed with non-rigorous assumptions and doesn’t have a physical interpretation. However,
these deficiencies can be addressed with the statistical mechanics methods of Gibbs. First, recall that the phase space
probability density, f [N](rN,pN; t), is a function so that f [N](rN,pN)drNpN is the probability at time t that the system
will be in the 6N-dimensional phase space element drNpN. By defining a specific physical system, we can ascribe a
functional form to this probability distribution. For instance, if we take a collection of particles at equilibrium with a
heat bath of fixed temperature but that cannot exchange particles, we obtain the canonical probability distribution,

f [N]
0 (rN,pN) # exp(↓&H )

QN
(265)

where QN is the familiar N-particle canonical partition function and the subscript of 0 for f indicates that the system is
at equilibrium and therefore does not depend on time.

Generally, the N-particle phase space probability density function contains unnecessary information that can be
integrated out to obtain so-called reduced phase space distribution functions in the following way,

f [n](rn,pn; t) =
N!

(N ↓n)!

∫∫
f [N](rN,pN)dr(N↓n)dp(N↓n) (266)

which has an obvious physical interpretation: f [n](rn,pn; t)dr(N↓n)dp(N↓n) gives the probability of finding the system
in a reduced phase space element dr(N↓n)dp(N↓n) irrespective of all other particle positions and momenta. Now,
in general this reduced phase space probability density at equilibrium is separable into kinetic and potential parts
(H = K +P) so that,

f [n](rn,pn) = # [n]
N (rn) f [n]M (pn) (267)

where the # [n]
N (rn) is the equilibrium n-particle density function so that # [n]

N (rn)drn is the probability of finding a set of
n particles in reduced phase space volume element drn irrespective of the positions of all other particles and irrespective
of all momenta.

Direct Correlations as Derivatives of Free Energy The Gibbs interpretation offers us more mathematical rigor
and precision that resolves many of the issues we have seen in Ornstein and Zernike’s original manuscript. First, we
will discuss the physical interpretation of the total correlation function in the Gibbs interpretation. Intuitively, the total
correlation function, h(2)(r,r⇒), which appears in the OZ equation, describes the ensemble average distribution function
of any two particle densities in the system. However, this quantity is defined in terms of the equilibrium n-particle
density function in the following way,

g[n]N (rN) =
# [n]

N (rn)

%n
i=1 # [1]

N (ri)
(268)
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which, for a reduced 2-particle density function, can be written as,

g[2]N (r1,r2) =
# [2]

N (r1,r2)

# [1]
N (r1)#

[1]
N (r2)

(269)

and finally as our function,

h[2]N (r1,r2) = g[2]N (r1,r2)↓1 (270)

Notice that this function is defined in terms of a 2-particle density function, which contains contributions from
both individual particle densities and the intermediate particles as in our original picture from the Ornstein-Zernike
manuscript. Notice we have completely avoided the difficulties of assuming that the density function is continuous
(when in fact, it is not), since h[2]N (r1,r2) is equally described by an ensemble average that is continuous for liquids at
equilibrium.

So what of Ornstein and Zernike’s coupling constant function, f , under the Gibbs interpretation? Perhaps surprisingly,
f is exactly equal to a second partial functional derivative of the excess free energy functional, Fex[# (1)] (recall that the
excess part of the intrinsic free energy is just the contribution to the free energy due to particle interactions), so that,

c(r,r⇒) = ↓& ∃ 2Fex[# (1)]

∃# (1)(r)∃# (1)(r⇒)
(271)

Such a physical interpretation of the direct correlation is extremely satisfying for the following reasons. First, we see
that indeed the direct correlation does not involve reduced particle density distributions higher than order 1, meaning
that there is no contribution from intermediate particles (we had the same situation in Ornstein and Zernike’s picture
previously). However, now c(r,r⇒) can be thought of as a response of the excess intrinisic free energy to changes in the
single particle density distributions, rather than just the linear coupling terms of a truncated Taylor expansion. Such
a construction does not require c(r,r⇒) to abruptly vanish, resolving the issue with the modified Henkel transform in
section B.3.18. Finally, we now see how c(r,r⇒) could even be used to approximate the intrinsic free energy functional
and hence describe entirely the thermodynamics of a model fluid.

The OZ Equation in the Gibbs Interpretation See Section 3.5 of Theory of Simple Liquids by Hansen and
McDonald.

Numerical Implementations

The Isotropic OZ Relation and the Bridge Function In practice, we usually consider liquids to be isotropic,
allowing us to reduce the vector quantities introduced earlier into just the distance between particles, r, to give an
isotropic Ornstein-Zernike relation,

h(r) = c(r)+#
∫

c(|r↓ r⇒|)h(r⇒)dr⇒ (272)

which you may notice is just a convolution of h(r⇒) with c(|r↓ r⇒|),

h(r) = c(r)+# [h(r⇒) ∝ c(|r↓ r⇒|)](r) (273)

which under Fourier transform is simply,

ĥ(q) = ĉ(q)+# ĥ(k)ĉ(k) (274)

or rearranging,

ĥ(q) =
ĉ(q)

1↓# ĉ(q)
(275)
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Finally, diagrammatic techniques (see A Concise Course on the Theory of Classical Liquids by Santos and Section) and
the introduction of the indirect correlation function (∗(r) = h(r)↓ c(r)), allow us to write the radial distribution as,

g(r) = exp[↓&u(r)+ h(r)↓ c(r)+ b(r)] (276)

where b(r) is the so-called, and unknown to us, bridge function arising from elementary diagrams in the integral
expansion of g(r). Using the definition of the indirect correlation, we find that,

g(r) = exp[↓&u(r)+ ∗(r)+ b(r)] (277)

Noting that h(r) = g(r)↓1, we can subtract the direct correlation c(r) from both sides of the equation to obtain,

h(r)↓ c(r) = g(r)↓1↓ c(r) (278)

and using the definition of the indirect correlation and the diagram expansion of g(r),

∗(r) = exp[↓&u(r)+ ∗(r)+ b(r)]↓1↓ c(r) (279)

which, upon rearranging, gives,

c(r) = exp[↓&u(r)+ ∗(r)+ b(r)]↓ ∗(r)↓1 (280)

Here a closure relation is introduced to write b(r) in terms of the indirect correlation function. Specific examples will
be provided in section B.3.18.

OZ Fourier Transform in Terms of the Indirect Correlation In terms of the indirect correlation, the OZ equation
becomes,

∗(r) = # [(∗(r)+ c(r)) ∝ c(|r↓ r⇒|)](r) (281)

, which, upon taking the Fourier transform, gives,

∗̂(q) = #(∗̂(q)+ ĉ(q))(ĉ(q)) = #∗̂(q)ĉ(q)+# ĉ2(q) (282)

and rearranging,

∗̂(q) = # ĉ2(q)
1↓# ĉ(q)

(283)

Iterative Numerical Solvers We now have everything we need to solve for the pair correlation function h(r), given a
potential. The steps we use are:

1. Guess the indirect correlation function ∗(r).
2. Compute the direct correlation function, c(r), using eq (280) and a suitable closure relation for the bridge

function.
3. Fourier transform c(q).
4. Compute Fourier transform of the indirect correlation, ∗̂(q), using eq (283).
5. Fourier transform ∗̂(q) to get a new guess for ∗(r).
6. Repeat until convergence.

Now, what if we have the total correlation function from experiment but do not know the potential? In this case, we
change the algorithm as follows:

1. Guess the pair potential &u(0)(r).

102



Uncertainty-Aware Liquid State Modeling from Experimental Scattering Measurements

2. Compute the direct correlation function, c(r), using eq (280) and a suitable closure relation for the bridge
function.

3. Fourier transform c(r).

4. Compute Fourier transform of the total correlation, ĥ(q), using eq (275).

5. Fourier transform ĥ(q) to get h(r).

6. Perform iterative refinement scheme to update potential to &u(1)(r).
7. Repeat until the computed h(r) matches the experimental data.

B.3.19 Density Functionals

Consider a region of some volume, v, which contains N1, ...,Nk molecules of k-species. First, define the single particle
density functional for species % as,

# (1)
% (r1) =

N%

∀
i%=1

∃ (riff ↓ r1) (284)

where the ∃ is understood as the Dirac-∃ function. Let’s consider the content of this equation fully before proceeding.
The term # (1)

% (r1) is explicitly referring to the number density (in atoms/volume units) as a function of position (r1, also
known as configuration space), of a specific species % . We can evaluate this functional in the following way. Suppose
we are given some vector r, defined with respect to some pre-defined (and arbitrary) coordinate system. Then we just
check if that vector points to (or corresponds with) the position of a particle with label % . If it does, the functional
returns a ∃ distribution at that vector, and if not, a zero. Then, the integral of the single particle density functional over
the entire volume is just exactly equal to the number of particles of species % such that,

∫

v
# (1)

% (r1)dv = N% (285)

which essentially just amounts to counting all of the atoms of species % in the given system.

Now that we have introduced the singlet particle density functional, we will proceed to the pair density functional,
which by a similar definition is given as,

# (2)
% ,& (r1,r2) =

N%

∀
i%=1

N&

∀
k&=1

∃ (riff ↓ r1)∃ (rkfi ↓ r2) (286)

which can be understood in a similar way as the single particle density functional. First, give the functional two vectors
and then determine if (1) vector 1 points to the position of a particle with label % and (2) vector 2 points to the position
of a particle with label & . If both statements are true then the functional returns a ∃ distribution at that pair of vectors,
and if not it returns a zero. As in the previous equation, the summation goes over all of the known positions of both
particles. In this case, the integral over the entire space is,

∫

v1

∫

v2
# (2)

% ,& (r1,r2)dv1dv2 = N% N& ↓N% ∃%& (287)

since in the first integral we will find all particles of label & given a specific vector for label % , then the second integral
will find N& particles for all positions of particles % . Thus, the total number of counts where # (2)

% ,& (r1,r2) is non-zero is
N% N& . However, if % = & then we will double count the vectors N% times, so we need to subtract N% ∃%& in this case.

Note that to this point we have simply looked a system of particles with fixed positions. Of course, in real physical
systems the particles are always moving and we observe the averages of the motions. Therefore, we need to consider an
ensemble of systems that represent the average behavior of the system, which amounts to taking the ensemble average
of the density functionals.

We then need to evaluate the average of the density functionals in the grand canonical ensemble. Rather than write
these explicitly, we just apply Equation (15) to the integrals of the singlet and pair density functionals to obtain,
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#̂ (1)
% (r1) = →# (1)

% (r1)↑ (288)

#̂ (2)
% ,& (r1,r2) = →# (2)

% ,& (r1,r2)↑ (289)

which by linearity of the expectation gives,

∫

v
#̂ (1)

% (r1)dv = →N%↑ (290)

∫

v1

∫

v2
#̂ (2)

% ,& (r1,r2)dv1dv2 = →N% N& ↑↓→N%↑∃%& . (291)

Furthermore, by linearity of the expectation we can combine these two equations in the following clever way,

∫

v1

∫

v2
[#̂ (2)

% ,& (r1,r2)↓ #̂ (1)
% (r1)#̂

(1)
& (r2)]dv1dv2 =

[→N% N& ↑↓→N%↑→N& ↑]↓→N%↑∃%& .
(292)

We can further simplify this expression by noting that the means of the density functionals take on specific forms in
fluids. For example, the mean of the single density functional of a species % is just the concentration (in atoms/volume)
of that species c% . The mean of the pair density functional is given a special definition in terms of the radial distribution
function, which is just,

#̂ (2)
% ,& (r1,r2) = c% c& g% ,& (r). (293)

Plugging these definitions into our integral equation, we obtain,

∫

v
[g% ,& (r)↓1]dv =

v
→N% N& ↑↓→N%↑→N& ↑

→N%↑→N& ↑
↓

∃%&
→N%↑

(294)

which is precisely the relationship needed to connect the integrals of the radial distribution function with thermodynamic
properties from the grand canonical ensemble. Just take eq (294) and substitute in eq (245) and we obtain,

c% c& G% ,& + ∃% ,& c% =
&
v

(
, µ%
,N&

)

T ,V ,Ni ⇐=&

(295)

where we have defined,

G% ,& =
∫

v
[g% ,& (r)↓1]dv. (296)

C Principles of Bayesian Statistics

C.1 Probability Theory

Probability theory is the foundation of statistics, population modeling, and making inferences from experimental data.
Here we begin our discussion with set theory, which is fundamental in the study of probability.
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C.2 Set Theory

The possible outcomes from an experiment are known as a sample space. This sample space is represented by a set, S .
Any subset of S is known as an event including S itself and the number of unique elements in the set can either be
countable or uncountable depending on the possible experimental outcomes.
Theorem C.1. For any three events A, B, and C contained in S , the following relationships are true:

A△B = B△A (297)

A▽B = B▽A (298)

A△ (B△C) = (A△B)△C (299)

A▽ (B▽C) = (A▽B)▽C (300)

A▽ (B△C) = (A▽B)△ (A▽C) (301)

A△ (B▽C) = (A△B)▽ (A△C) (302)

(A△B)c = Ac ▽Bc (303)

(A▽B)c = Ac △Bc. (304)

We define two events A and B to be mutually exclusive if A▽B = 0 and a collection of events Ai to form a partition if⋃
i Ai = S and the set of Ai are mutually exclusive.

C.2.1 Probability

For every event A we associate a number between 0 and 1 as the probability of event A as P(A). This will only hold if
the subsets of S form a Borel field B, defined so that the elements of the field are closed under the union operation,
all compliments of a subset also exist in B, and that the null set is contained in B. We can then define a probability
function P(A) with Borel field domain B such that,

P(A) ↔ 0 (305)

P(S ) = 1 (306)

P(
⋃

i
Ai) = ∀

i
P(Ai) (307)

where the last equality holds only if the set Ai are mutually exclusive. These are referred to as Kolmogorov’s Axioms
and are fundamental axioms from which we will construct probability theory.

It is also useful to define probability in a functional analytic sense. A probability space is defined as a measure space
(Ω,S ,P) where Ω is a non-empty set of all possible events, S is a ! -algebra, and P is a probability measure such
that P(Ω) = 1 (c.f. Appendix B).
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C.2.2 The Fundamental Theorem of Counting

Theorem C.2. If a job consists of k separate tasks, the ith of which can be done in ni ways, then the entire job can be
done in n1 ↖n2 ↖ ...↖nk ways.

The Fundamental Theorem of Counting (FTC) seems quite obvious but may be difficult to implement in practice. For
example, we may have situations where we cannot count the same thing twice, known as counting without replacement.
Or, we may have situations where the order that we count matters, which is known as ordered counting.

Let’s consider an example where a person can select six numbers from a set of 44 different numbers for a lottery
ticket. We will examine each of the four different cases for counting the total number of possible ways for a ticket
to be selected. Ordered, without replacement: Using the FTC, we note that we can pick the first number in 44
ways, the second in 43 ways, etc, so that we have the total number of ways as 44↖43↖42↖41↖40↖39 = 44!

38! =
5,082,517,440 possible ways. Ordered, with replacement: We now have 44 choices every time so the total number
is 44↖44↖44↖44↖44↖44 = 446 = 7,256,313,856 possible ways. Unordered, without replacement: This case is
interesting because there will be degenerate cases where the six chosen numbers are the same but selected in a different
order. The FTC tells us that the six numbers can be arranged in 6! ways, which means the total number of unordered
tickets are

44↖43↖42↖41↖40↖39
6!

=
44!

6!38!
= 7,059,052. (308)

We can define the previous operation as n choose r where

(
n
r

)
=

n!
r!(n↓ r)!

(309)

which is a binomial coefficient. The unordered, without replacement case gave a total number of choices of (44
6 ).

Unordered, with replacement: This is the most difficult case to count. We can think of this case as putting "markers" for
the chosen numbers into 44 "bins" (which have 45 walls separating them). We should ignore the end walls since no
matter how we rearrange the walls the ends will never contribute to the partition, so we have 43 total walls that can
move around the 44 numbers. We also have 6 markers that can move around, leaving us with 49 different objects that
can move around in 49! different ways. Since we are looking for the unordered ways to do this, we have to eliminate
redundant orderings of the walls (43!) and the markers (6!), leaving us with a total count of,

(
n+ r↓1

r

)
=

49!
6!43!

= 13,983,816. (310)

C.2.3 Conditional Probability

The conditional probability is the probability of an event A occurring given some other event(s) B and is denoted by
P(A|B). In essence, the conditional probability takes the sample space into event(s) B and then specifies the probability
that A is true,

P(A|B) = P(A▽B)
P(B)

. (311)

The definition of conditional probability leads to Bayes’ Rule, for which the proof is trivial and left as an exercise.

P(A|B) = P(B|A)P(A)
P(B)

. (312)

C.2.4 Sample Spaces and Random Variables

A mapping between a sample space to the real numbers is called a random variable. For example, if we roll two dice
there are 36 possible outcomes for the two numbers that appear on the dice. However, we can define a random variable
X as the sum of the numbers on the two dice, leaving us with a variable that ranges from [2,12] in whole number
increments. Every random variable has a cumulative distribution function which essentially describes the probability of
obtaining a result that is less than or equal to some specified value of the random variable. We write
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FX (x) = PX (X ↘ x) (313)

for all x ≃ X . This means that at the right most limit of our sample space (12 for the sum of two dice random variable)
that FX (x) = 1 and the left most limit that FX (x) = 0. As we move from the left limit to the right limit, FX (x) cannot
decrease, because it represents a sum of the probabilities of all the conditions before it. We can define our random
variable as continuous or discontinuous based on whether or not FX (x) is continuous or discontinuous, respectively.
Random variables X ,Y are said to be identically distributed if FX (x) = FY (x), which just means that their probability
distributions are the same as long as they belong to the same subset of a Borel field.

C.2.5 Probability Mass and Density Functions

The probability mass and density functions are probability distributions on a random variable in the discrete and
continuous cases respectively. They can be defined from the cumulative density distribution such that

FX (b) =
b

∀
k=1

fX (k) (314)

in the discrete case and

FX (x) =
∫ x

↓!
fX (t)dt (315)

in the continuous case. All this means is that the pmf and pdf are functions that, when summed up from left to right, give
the cumulative distribution function. Moving away from the mathematical definition, the pmf(x) gives the probability
of random variable x and the integral of pdf(x + dx) in the neighborhood of random variable x gives the probability
of observing the random variable in the interval [x,x+ dx]. PDFs must have finite integrals over the interval (↓!,!)
which means that the right and left limits must converge to zero.

C.3 Expectation Values and Moments

Suppose we construct a map between our random variable X to a new space Y that conserves our distribution on x,
named g(x). The expected value is the mean or average value of a distribution in a sample space that is given by Eg(x).
Defined in terms of the cumulative density function we have for continuous distributions,

Eg(x) =
∫ !

↓!
g(x) fX (x)dx (316)

and for discontinuous distributions

Eg(x) = ∀
x≃X

g(x) fX (x). (317)

The expectation value can be generalized to moments by the following definition

µ ⇒
n = EXn (318)

where µ ⇒
n is known as the nth moment of X . If we centralize the nth moment by the mean µ , we obtain what are known

as the nth central moments

µn = E(X ↓µ)n (319)

where µ = EX . The second central moment is commonly known as the variance and is important to describing the
distribution of a random variable.
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C.3.1 Exponential Distribution Example

Suppose that X has an exponential distribution such that

fX (x) =
1
)

e↓x/) (320)

where 0 ↘ x ↘ ! and ) > 0. We can calculate the mean of the distribution EX as

EX =
∫ !

0
x

1
)

e↓x/) dx =
∫ !

0
e↓x/) dx↓ xe↓x/) |!0 =

∫ !

0
e↓x/) dx = ) . (321)

And now calculate the variance E(X ↓µ)2 = E(X ↓) )2

E(X ↓) )2 =
∫ !

0
(x↓) )2 1

)
e↓x/) dx =

∫ !

0
(x2 ↓2x) +) 2)

1
)

e↓x/) dx. (322)

We can just integrate each term at a time, starting with the ) 2 term

∫ !

0

) 2

)
e↓x/) dx = )

∫ !

0
e↓x/) dx = ) 2 (323)

↓2)
∫ !

0
x

1
)

e↓x/) dx = ↓2) 2 (324)

∫ !

0
x2 1

)
e↓x/) dx = ↓x2e↓x/) |!0 + 2)

∫ !

0
x

1
)

e↓x/) dx = 2) 2 (325)

which gives a total variance of

E(X ↓) )2 =
∫ !

0
(x2 ↓2x) +) 2)

1
)

e↓x/) dx = ) 2 ↓2) 2 + 2) 2 = ) 2. (326)

C.3.2 Moment Generating Functions

Moment generating functions are general functions that can generate the nth moments of a distribution. The moment
generating function only exists if the expectation of a function exists in a neighborhood of zero. We define the moment
generating function as

MX (t) = Eetx. (327)

The nth derivative of the moment generating function at t = 0 is the nth moment. We can see this by considering the
following argument

d
dt

MX (t) =
d
dt

∫ !

↓!
etx fX (x)dx =

∫ !

↓!
xetx fX (x)dx = EXetx (328)

assuming that we can move the derivative into the integral sign, which is a special case of the Leibniz rule that applies
in this case. Now, notice that at t = 0 we have

d
dt

MX (t)|t=0 = EXetx|t=0 = EX . (329)

Now suppose we take n partial derivatives of MX (t), We obtain something that looks like

dn

dtn MX (t) =
d
dt

∫ !

↓!
etx fX (x)dx =

∫ !

↓!
xnetx fX (x)dx = EXnetx (330)
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which gives us the same thing as before when evaluated at t = 0 but for the nth moment

dn

dtn MX (t)|t=0 = EXnetx|t=0 = EXn. (331)

C.4 Common Families and Distributions

Families and distributions represent functional forms that can be used to model population distributions of random
variables. In this section, we explore common distributions and their properties.

C.4.1 Discrete Distributions

The uniform discrete distribution is a simple distribution of discrete values with probability distribution given by

P(X = x|N) =
1
N

. (332)

The hypergeometric distribution is best conceptualized by considering the case where you are looking for the probability
of selecting x red balls in k choices from a jar filled with M red balls and N ↓M green balls. The fundamental theorem
of counting gives us the probability distribution function,

P(X = x|N,M,k) =
(M

k )(
N↓M
k↓x )

(N
k )

. (333)

The binomial distribution is a distribution of independent Bernoulli trials that have only two possible outcomes that
occur with probability p and 1↓ p respectively. A conceptual example here is to consider the case where we want to
know the probability of an event occurring y times in n trials, such as the number of heads in a coin flip experiment.
Since the events are independent, we have a probability given by,

P(Y = y|n, p) =
(

n
y

)
py(1↓ p)n↓y. (334)

Poisson distributions are useful in counting experiments where the probability of observing an event increases with
time (which is intuitive for most cases). Poisson distributions have the form,

P(X = x|) ) = e↓) ) x

x!
. (335)

C.4.2 Continuous Distributions

The first common continuous distribution is the gamma distribution given by,

f (t) =
t%↓1e↓t

Γ(%)
(336)

Γ(%) =
∫ !

0
t%↓1e↓tdt. (337)

The normal distribution has probability distribution function given by,

f (x|µ ,!2) =
1↙

2∀!
e↓(x↓µ2)/(2!2). (338)

The mean and standard deviation give complete information about the shape and distribution of the random value and
therefore belong to a special class of distributions known as the location-scale families.
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C.4.3 Normal Variable Theorems

The first important result to consider is the normal linear transform theorem which states that,

% +&N (m,a2) = N (% +&m,& 2a2) (339)

which can be proved by finding the moment generating function of both sides of the equation. The second important
theorem is the normal sum theorem which states that,

N (m1 +m2,a2
1 + a2

2) = N (m1,a2
1)+N (m2,a2

2) (340)

as long as the two variables on the right hand side are statistically independent. This can also be proved by showing that
the moment generating functions on the right and left hand sides are equal.

C.5 Bayesian Inference

In Bayesian inference over a model M, we are interested in the posterior probability distribution of the model parameters
( given some observed data, which we denote p(( ,M|D). According to Bayes’ theorem, this quantity can be expressed
as,

p(( ,M|D) =
p(D|( ,M)p(( ,M)

p(D)
(341)

where p(D|( ,M) is the likelihood that data D is explained by the model and its parameters, p(( ,M) is our prior
knowledge (a preselected parameter distribution based on expert beliefs), and p(D) is the probability of observing data
D at all. The latter quantity need not be computed since we can often normalize the probability distribution post hoc,
allowing us to compute only the quantity,

p(( ,M|D) # p(D|( ,M)p(( ,M). (342)

In practice, then, all we need to do is choose prior distributions and a likelihood equation to perform Bayesian inference.
If the solution to the problem is not analytical, we can then compute the posterior by sampling this distribution with
Markov chain Monte Carlo (MCMC).

C.5.1 Bayesian Model Averaging

What happens if we have multiple models that provide information about the same quantity-of-interest and we want to
combine those predictions? Bayesian model averaging allows us to infer the probability distribution function on a set of
model parameters by combining results from different models in a rigorous way. The idea is basically to compute an
average of the parameter probability distributions calculated from Bayesian inference weighted by the model probability
and model evidence. Note that in the case that you are estimating a model parameter that the parameter must have the
exact same interpretation in both models. If the parameter has a different interpretation, then Bayesian model averaging
will not apply.

In Bayesian model averaging, the posterior distribution for the model parameters ( given experimental data D, p(( |D),
is equal to a weighted sum of posterior distributions over a model set M = [M1, ...,Mn] such that,

p(( |D) = ∀
M

p(M|D)p(( |M,D) (343)

where p(( |M,D) is the posterior distribution of model parameters for model M and p(M|D) is the posterior model
probability computed via,

p(M|D) =
p(D|M)p(M)

∀M⇒ p(D|M⇒)p(M⇒)
. (344)

The quantity p(D|M) is known as the marginal likelihood of model M and p(M) is the prior model probability.

Assuming that the probability of each model is the same leads to a simplification of eq (344) such that,
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p(M|D) =
p(D|M)

∀M⇒ p(D|M⇒)
. (345)

The tricky step is determining the marginal likelihood of model M, p(D|M). However, notice that we can compute this
quantity using the likelihood computed for that model and its parameters in the following way,

p(D|M) =
∫

p(D|( ,M)p(( ,M)d( (346)

which is just the integral over the parameter space of the likelihood multiplied by the prior for model M. This is why
p(D|M) is known as a marginal likelihood, since it is a marginal distribution of the likelihood without the model
parameters.

At this stage, we simply need to run Bayesian inference over both models, compute the marginal likelihood of each
model, plug those results into eq (345) to obtain the posterior model probabilities, and finally compute the Bayesian
model average in eq (343) using the Bayesian posterior probabilities computed over all models weighted by the posterior
model probabilities. The result will be a probability distribution on the model parameters that takes into account the fit
quality of both models in a rigorous way.

C.6 Bayesian Nonparametrics

Bayesian nonparametrics is the application of Bayesian inference to models with no fixed number of parameters [39].
For example, Bayesian nonparametrics can be used to learn functional distributions for infinite dimensional continuous
and differentiable functions defined on the real line or even multidimensional fields. The main idea is that we are
extending the earlier notion of Bayesian inference over a set of model parameters to an entire distribution of functions.
Detailed and mathematically rigorous formulations can be found in Lemm’s Bayesian Field Theory [43].

C.6.1 Gaussian Processes

Of the various nonparameteric Bayesian methods, Gaussian processes are the most widely used for physics based
applications. A Gaussian process is a stochastic process such that every finite set of random variables (position, time,
etc) has a multivariate normal distribution. In other words, suppose we take some real world process represented as a
function f (x). We say that f (x) is distributed as a Gaussian process with mean µ(x) and covariance k(x,x⇒) by writing,

f (x) ⇑ G P(µ(x),k(x,x⇒)) (347)

where the ⇑ symbol can be interpreted as ’distributed as’. The predictive mean of this distribution can be computed
using the complete-the-square trick to obtain,

f̄∝ = µ(X∝)+K(X ,X∝)K↓1
y [y↓µ(X)] (348)

with covariance,

cov(f∝) = K(X∝,X∝)↓K(X ,X∝)[K(X ,X)+!2
n I]↓1K(X ,X∝) (349)

where K is the covariance matrix constructed from k(x,x⇒), Ky = K(X ,X)↓!2
n I, I is the identity matrix, y is a given

set of training observations at training matrix inputs X and model output matrix X∝. Often, the mean function is chosen
to be zero, but choosing a non-zero mean function can be beneficial to enforce physics based behavior in the resulting
function and/or to enhance interpretability (c.f. Chapter 3).

Note that Gaussian processes are also used for classification problems [106], including one of the authors recent papers
on tree species classification from airborne imaging spectroscopy data [251].

C.6.2 Physics-Informed Kernel Design

Kernel design is arguably the most important aspect of Gaussian process regression and classification. The kernel, along
with the Gaussian process prior mean, specify a prior state-of-knowledge that can be leveraged to improve the physical
reliability of the Gaussian process prediction. Kernel selection can enforce highly general notions such as continuity
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and differentiability, function behavior including periodicity, and also non-stationary covariances through methods such
as the Gibbs kernel [196, 252]. Note that knowing how to construct physics-informed kernels for a learning problem of
interest can be extremely valuable and restrict the function space to only physically realizable predictions.

From here, we can use thermodynamic relationships to derive a number of properties of multi-component systems
in terms of the Kirkwood-Buff integrals since we know the relationship between thermodynamic derivatives and
measurable thermodynamic properties.

D Introduction to Functional Analysis

Quantum theory developed around the same time as the theory of structural correlations in condensed matter systems.
Unlike classical mechanics, which was used to construct much of the known statistical theory of liquids, quantum
mechanics is a deeper and more fundamental physical description of the behavior of atoms. Early work by Heisenberg,
Schrodinger, and Planck was based on evidence from famous experiments from the early 20th century; however, a
satisfactory description of quantum theory was not presented until John von-Neumann, a chemical engineer by training
and a mathematician at heart, proposed that quantum mechanics could be described by an emerging mathematical field:
functional analysis. The content of this appendix is necessary to understand the notation and mathematical objects that
describe the functional analysis interpretation of the Henderson inverse theorem for Lennard-Jones type fluids as well
as Bayesian field theory.

D.1 Introduction to Functional Analysis

Functional analysis will provide us with the mathematical rigor to describe physical observables such as the momentum,
spin, or position with both discrete and continuous spectra. This section uses rigorous mathematical notation to properly
define the quantum theory within the context of the mathematics of infinite dimensional vector spaces and is based on
the excellent lecture series from Frederich Schuller and the book Mathematical Foundations of Quantum Mechanics by
John von Neumann.

D.1.1 Banach and Separable Hilbert Spaces

A Banach space is a vector space (V ,+, ·, || · ||) equipped with a non-negative, linear norm that satisfies the triangle
inequality and that is complete with respect to this norm, meaning that any Cauchy sequence in V converges to an
element in V . A sequence { fi} for fi ≃V is Cauchy if,

∞∋ > 0 ̸N ≃ N ⇔ n,m ↔ N ‖ fn ↓ fm‖< ∋ (350)

which means that for any real number ∋ greater than 0 (including those that are arbitrarily small) that there exists some
natural number N such that for n,m larger than N that the norm of fn ↓ fm is smaller than ∋ . A sequence { fi}∀V is
said to strongly converge to f ≃V if,

∞∋ > 0 ̸n ≃ N ⇔ ∞n > N ‖ fn ↓ f‖< ∋ (351)

and converge weakly if,

∞ω ≃V ∝ (352)

that ω( fi) strongly converges to ω( f ). Here V ∝ is defined as the dual space of a normed space V , which is the space of
bounded linear maps, L (V ,C), equipped with the norm ‖‖L .

Now, a bounded map A : V ⇓W that takes an element of a normed (and not necessarily complete vector space) to a
complete Banach space satisfies,

‖A‖= sup
‖ f‖V =1

‖A f‖W < ! (353)

where ‖A‖ is called the operator norm. Hence, the operator norm measures the "size" of A by determining the biggest
change in the ‖A f‖W and clearly depends on f and the norms in the V and W spaces.
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Theorem D.1. The set of all linear and bounded maps defined as,
L (V ,W ) := {A : V ⇓W} with A linear and bounded, is a Banach space if equipped with pointwise addition and the
operator norm ‖·‖L (V ,W ).

Proof. We begin by defining addition and scalar multiplication on L (V ,W ) so that,

+L : L ↖L ⇓ L (354)

·L : C↖L ⇓ L ∞% ≃ C. (355)

Commutativity, associativity, the neutral element and an inverse element of the +L and associativity, distributivity, and
the scalar identity are given since V is a vector space and L are linear maps. Since L is bounded and W is a Banach
space, we must have,

‖·‖L (V ,W ) = sup
f≃V :‖ f‖V =1

‖A f‖W < !. (356)

It suffices to show that (L (V ,W ),+L , ·L ,‖·‖L ) is complete with respect to the operator norm. Choose a candidate
map as the limit of a Cauchy sequence in L such that,

A : V ⇓W (357)

f ≃V ⇓
!

∀
n=1

An f ≃W . (358)

A is linear and bounded since An is linear and Cauchy in L . Now, we just need to show that An converges against A.
Since An is Cauchy,

∞∋ > 0 ̸N ≃ N ⇔ n,m ↔ N ‖An ↓Am‖< ∋ . (359)

By the definition of the operator norm, we have the estimate,

∞ f ≃V
‖(An ↓Am) f‖W

‖ f‖V
↘ ‖An ↓Am‖< ∋ . (360)

Noting the linearity of addition and taking the limit as m ⇓ ! gives,

lim
m⇓!

‖An f ↓Am f‖=
∥∥∥An f ↓ lim

m⇓!
Am f

∥∥∥= ‖An f ↓A f‖< ∋‖ f‖V . (361)

Thus,

∞ f ≃V ∞∋ > 0
‖An f ↓A f‖W

‖ f‖V
< ∋ . (362)

But since this is true for all f ≃V , it is certainly true for f that give the supremum of this quantity,

∞ f ≃V ∞∋ > 0 ̸N ≃ N ⇔ n ↔ N ‖An ↓A‖ ↘ ∋ . (363)

Hence, An converges against A ≃ L (V ,W ) and therefore L (V ,W ) is complete.

113



Uncertainty-Aware Liquid State Modeling from Experimental Scattering Measurements

Theorem D.2. The Bounded Linear Transformation (BLT) Theorem: There is a unique extension, Â, of a bounded
linear map,

A : DA ∀V ⇓W ⇔ DA = V (364)

where DA is densely defined subset of a normed vector space V . This extension is defined as,

Â : V ⇓W ⇔ Â(%) ∞% ≃ DA =∈ Â(%) = A(%). (365)

Proof. Let f ≃ V and consider a sequence { fn} ∀ DA such that limn⇓! fn = f . Now, this means that fn and A fn is
Cauchy since A is bounded and further that limn⇓! A fn ≃W because W is Banach. We can then propose an extension,

Â : V ⇓W (366)

f ≃V ⇓ Â f := lim
n⇓!

A fn (367)

which is clearly an extension since, if we let f ≃ DA ∀V such that limn⇓! fn = f ,

Â( f ) = lim
n⇓!

A fn = A( f ). (368)

Now, the extension Â is linear due to the continuity of addition and scalar multiplication. We now just need to show that
Â is unique. Suppose that there is a second extension B̂ and consider Â↓ B̂ acting on a Cauchy sequence fn,

(Â↓ B̂)( fn) = 0. (369)

To understand the definition of a separable Hilbert space, we must first consider a few important theorems and definitions
of bases in infinite dimensional vector spaces. A Hilbert space is a C-vector space (H , +, ·) equipped with a sesqui-
linear inner product that induces a norm, with respect to which (H , +, ·) is complete. A sesqui-linear inner product is
an inner product (·, ·) : H ↖H ⇓ C that is Hermitian,

(/ ,.) = (. ,/ ) (370)

and linear in the second argument,

(/ ,.1 +%.2) = (/ ,.1)+%(/ ,.2) (371)

with the additional condition that (. ,.) ↔ 0 with equality when . = 0 ≃ H .
Theorem D.3. A norm ‖·‖ : V ⇓ R is induced by a sesqui-linear inner product if and only if the parallelogram identity
holds,

∞ f ,g ≃V ‖ f + g‖2 + ‖ f ↓g‖2 = 2‖ f‖+ 2‖g‖. (372)

Proof. By the definition of the norm we have,

‖ f + g‖2 + ‖ f ↓g‖2 = sup
v≃V

(
| f (v)+ g(v)|2

‖v‖2 +
| f (v)+ g(v)|2

‖v‖2

)
(373)

sup
v≃V

2 f f̄ + 2gḡ
‖v‖ = 2‖ f‖+ 2‖g‖. (374)
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The notion of a basis set for a naked vector space (V ,+, ·) is familiar from linear algebra in the form of a Hamel basis.
A subset B ∀V is called a Hamel basis if,

1. Any finite subset {e1,e2, ...,en}∀ B is linearly independent. This means that,

n

∀
i=1

)iei = 0 (375)

implies that )1 = )2 = ... = )n = 0.
2. For any v ≃V there exists a finite subset {e1,e2, ...,en}∀ B and complex numbers v1,v2, ...,vn} so that,

v =
n

∀
i=1

viei. (376)

The dimension of the vector space is then defined based on the number of elements of the basis set (it can be finite or
infinite). In quantum mechanics, the notion of a basis is actually different since we are working with Hilbert spaces.
The Schauder basis S ∀ H on a Hilbert space (H ,+, ·,→·|·↑) is defined as,

1. Same condition as (1) for a Hamel basis.
2. For any . ≃H there exists a unique, countable subset {e1,e2, ...}∀ S and a unique sequence {.i}i={1,2,...} ≃C

such that . can be written like (2) for finite dimensions and if |S|= !,

. =
!

∀
i=1

.iei. (377)

A Schauder basis S is a more powerful means to generate elements of a Hilbert space, since in general we need less
elements to write any element of the Hilbert space than in the more familiar Hamel basis, B. A Hilbert space is called
separable if it has a countable and orthonormal Schauder basis. Surprisingly, all infinite dimensional separable Hilbert
spaces are unitarily equivalent to the set of all square-summable sequences in the complex numbers. The definition of a
unitary map U ≃ L (H ,G ) between two Hilbert spaces H and G is that the map preserves the inner product such
that,

∞/ ,. ≃ H (U . ,U / )G = (. ,/ )H . (378)

By the polarization formula, it suffices to check whether U ≃ L (H ,G ) preserves norms.
Theorem D.4. (H ,+, ·, (·, ·)) is unitarily equivalent to ω2(N, (·, ·)).

Proof. We need to show that there exists a bounded linear map that preserves norms such that,

‖U .‖ω2 = ‖.‖H . (379)

Let’s choose an orthonormal Schauder basis on H and construct a map that takes an element of H into ω2(N) such
that . ⇓ {(en,.)}n≃N. Since {ei} is a Schauder basis we have,

. =
n

∀
i=1

(ei,.)ei (380)

and ‖.‖2
H = ∀!

n=1 |(en,.)|2 = ‖U .‖2
ω2(N). We can show that this map is linear and bounded trivially, completing

the proof.

In this section, we have introduced the definitions of separable Hilbert spaces and proved two very important results in
quantum theory. The first is the Bounded Linear Transformation theorem which shows that for a bounded linear map A
defined on a dense subset of a normed vector space V that there exists a unique extension Â defined on V . The second is
that all infinite-dimensional separable Hilbert spaces are unitarily equivalent to the set of square-summable sequences
in the complex numbers.
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D.1.2 Measure Theory

Here a short introduction to measure theory is provided without proofs since (1) the spectral theorem for self-adjoint
operators requires the notion of mathematical objects called projection-valued measures and (2) the most common
!-dimensional Hilbert space in quantum mechanics is the L2(Rd) space equipped with the Lebesgue measure.

Let M be a non-empty set. Then the collection of subsets ! ∀ P(M) (the power set of M) is called a ! -algebra for M
if,

1. M ≃ !
2. For A ≃ ! , then M\A ≃ !
3. For a sequence A1,A2, ... ≃ ! , then

⋃
n↔1 An ≃ !

A set A ≃ ! is called measurable since it can be assigned a "volume". A measurable space is the original set M taken
with the additional structure of the ! -algebra, (M,!). However, at this point it is not clear how to actually measure
the "volume" of elements in the set, so we add an additional map known as a measure that takes an element of the
! -algebra to an element of the extended, positive real numbers,

µ : ! ⇓ R̄+
0 (381)

that satisfies the following properties:

1. µ( /0) = 0
2. For a pairwise disjunct sequence A1,A2, ... ≃ ! such that Ai ▽A j = /0 if i ⇐= j then,

µ
( ⋃

n↔1
An

)
= ∀

n↔1
µ(An) (382)

Of course, if the sequence in (2) above is not pairwise disjunct we have the estimate,

µ
( ⋃

n↔1
An

)
↘ ∀

n↔1
µ(An). (383)

The measure is the map that takes an element of the ! -algebra and "measures" it, or actually assigns it a "volume".
Taking the set M along with its ! -algebra and a measure defines a measure space, (M,! , µ).
Up to this point, the definition of a measure space has been quite abstract, with no clear prescription for how to choose
the ! -algebra or measure. In quantum mechanics, there are actually very few ! -algebras and measures that will be
important to our study of the spectral theorem of self-adjoint operators, but we will first need to introduce the concept
of a topology to motivate our choices. A topology on M is the collection of subsets O ∀ P(M) with the following
properties:

1. /0,M ≃ O

2. Closure under countable unions of ui ≃ O implies that,

!⋃

i=1
ui ≃ O . (384)

3. Closure under finite intersections such that if ui ≃ O then,

( !⋂

i=1
ui

)
≃ O . (385)

and a space taken with its topology is termed a topological space, (M,O). The open sets on a topological space (M,O)
are an interesting generating set for a ! -algebra known as the Borel-! -algebra. When M = R, the Borel-! -algebra
generates the "standard topology" such that,
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∞a,b ≃ R, (a,b) ≃ ! (386)

which can then be equipped with a special measure known as the Lebesgue measure,

µL = ) d : !(O)⇓ R+
0 (387)

where,

) d([a1,b1)↖ [a2,b2)↖ ...↖ [ad ,bd)) = (b1 ↓a1)...(bd ↓ad) (388)

which just defines volume as the product of the lengths of the sides of a d-dimensional rectangular prism in Rd . In
quantum theory, we will almost always take the vector space of real numbers, Rd , equipped with Borel-! -algebra,
!(O), and Lebesgue measure, ) d , as our measure space, (Rd ,!(O),) d).

The Lebesgue Integral

By definition, a map f : M ⇓ N is called measurable (w.r.t. ! -algebras on each set) if ∞A ≃ !N : preim f (A) ≃ !m.
Conceptually, all this means is that a map between two measurable spaces is measurable if the preimage of any element
of the target space ! -algebra is in the original space ! -algebra. Clearly, we then have that any continuous map is
measurable w.r.t. the Borel-! -algebra and any monotonous map is measurable.

The push-forward of a measure is a way that a measurable space can inherit a measure from a measure space.
Let (M,! , µ) be a measure space, (N,−) be a measurable space, and let f : M ⇓ N be a measurable map so that
∞A ≃ − : preim f (A) ≃ ! . The so-called push-foward f∝µ is a measure on (N,−) such that,

f∝µ : − ⇓ R̄+
0 (389)

∞A ≃ − : f∝µ(A) = µ(preim f (A)) (390)

which means that the push-forward allows us to construct a measure space with measure f∝µ; namely, (N,− , f∝µ).
We begin our discussion of Lebesgue integrals by studying only non-negative measurable functions. We will see that in
general measurable functions can be integrated so long as the integral of the absolute value of the function is finite, but
it will require decomposing the general measurable function into two (or four in the case of complex numbers) integrals
over non-negative measurable functions.

We will begin by defining a simple function, which is a measurable function s : M ⇓ R+ that satisfies,

s(M) = {s1, ...,sN} for some N ≃ N (391)

which by definition means that M and R+ are measurable spaces, (M,!(OM )) and (R+,!(O)). Hence, we know that,

preims({si}) ≃ !(OM ) (392)

and,

s = ∀
z≃s(M)

z ·0preims({z}) (393)

where the 0preims({z}) is a map 0A : M ⇓ R such that,

0A(m ≃ M) =

{
1 m ≃ A
0 m /≃ A (394)

known as the characteristic function. Therefore, the characteristic function 0preims({z}) is a map from M to R that is
zero unless it is evaluated for some m ≃ M where {z}= s(m) and the preimage of s(m) is in the ! -algebra of M.

A non-negative measurable function is a measurable function f : M ⇓ R̄ such that,
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1. ∞m ≃ M: f (m) ↔ 0
2. f is measurable on !(OR̄)

Now, the Lebesgue integral of a non-negative measurable function f : (M,!M , µ)⇓ R̄ is given by,

∫
f (x)µ(dx) =

∫
f dµ := sup

[
∀

z≃s(M)

z ·R̄ µ(preim f ({z})
]

(395)

where s(M) = {s1,s2, ...,sn} is a finite sequence of values from simple measurable functions. Notice we do not require
a measure on the target space, but only on the domain (owing to the use of the supremum). The Lebesgue integral of a
non-negative and measurable function has the following nice properties:

1. Markov inequality: z ≃ R+
0 then


f dµ ↔ z ·µ(preim f {z}).

2. f ↘ g implies


f dµ ↘


gdµ .
3. f =a.e. g implies


f dµ =


gdµ .

4.


f dµ = 0 implies f =a.e. 0.
5.


f dµ < ! implies f <a.e. !.

where the abbreviation a.e. stands for "almost everywhere". If an expression holds almost everywhere then it holds on
the measure space for all elements where the measure is non-zero, µ(A) ⇐= 0 for A ≃ ! . The following three theorems
will be stated without proof.
Theorem D.5. Theorem of Monotone Convergence: Let 0 ↘ f1 ↘ f2... be a sequence of measurable functions such that
fn : M ⇓ R̄. Provided that f := supn↔1 fn pointwise, then we have,

lim
n⇓!

∫
fndµ =

∫
f dµ . (396)

Theorem D.6. Let f ,g ↔ 0 be measurable functions and % ≃ R+
0 . Then,

∫
( f +%g)dµ =

∫
f dµ +%

∫
gdµ . (397)

Theorem D.7. For any sequence fn : M ⇓ R̄+ we have,

∫ ( !

∀
n=1

fn

)
dµ =

!

∀
n=1

∫
fndµ . (398)

Now, extending the previous notions to general functions f : M ⇓ R̄ we define that the function is integrable if:

1. f is measurable
2.


| f |dµ is finite

Remark: Condition 2 is equivalent to requiring that the decomposition of f = f+↓ f↓ into f+ := max( f ,0) and
f↓ := max(↓ f ,0) gives integrals over f+ and f↓ that are finite. The integral of an integrable function is then defined
as (with a visualization provided in Figure 42),

∫
f dµ :=

∫
f+dµ ↓

∫
f↓dµ (399)

Note that this is easily generalized into complex spaces since we can write,

∫
f dµ :=

∫
Re( f )dµ + i

∫
Im( f )dµ (400)

for both f+ and f↓.

The Lebesgue integral of integrable functions f ,g has the following properties:
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Figure 42: Example of a decomposition of a bounded, measurable function into f+ and f↓. The Lebesgue integral is
then just the integral of the blue region minus the integral of the orange region.

1. f ↘a.e. g implies


f dµ ↘


gdµ
2. ∞% ≃ R:


( f +%g)dµ =


f dµ +%


gdµ

Theorem D.8. Theorem of Dominant Convergence: Let f1, f2, ... be a sequence of non-negative functions such that
f ⇓a.e. f pointwise for some function f . Let g be a non-negative, measurable function with


gdµ < ! s.t. ∞n ≃ N:

| fn|↘a.e. g. Then the following properties hold:

1. f and all fi are integrable including the limit function.

2. limn⇓!

| fn ↓ f |dµ = 0

3. limn⇓!


fndµ =


f dµ

A visualization of the theorem of dominant convergence is provided in Figure 43.

LP(M,! , µ) Function Spaces

Define the set, L P := { f : M ⇓ C| f measurable,

| f |pdµ < !}. If we equip L P with pointwise addition and scalar

multiplication then clearly L P is a C vector space. One can then construct a map {{·}}p : L P ⇓ R such that,

{{ f}}p =

(∫
| f |pdµ

)1/p

(401)

where p ≃ R and 1 ↘ p < ! that is a semi-norm with the following properties:

1. ∞% ≃ C then {{% f}}p = |%| ·C {{ f}}p

2. ∞ f ,g ≃ L P then {{ f +L g}}p ↘ {{ f}}p +C {{g}}p

3. {{ f}}p ↔ 0 and {{ f}}p = 0 implies f =a.e. 0
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Figure 43: If g is a non-negative, measurable function such that


gdµ < ! and g dominates fn ⇓ f pointwise almost
everywhere (| fn|↘a.e. g), then f and even fi are integrable.

Notice that for a norm, we must have that the last condition is satisfied everywhere (not almost everywhere). Therefore,
L P is not even a normed space. However, we can use equivalence classes to remove troublesome functions in L P that
are zero almost everywhere while refusing to be zero everywhere. First, we can define the equivalence relation between
f ,g ≃ L P as equivalent if,

f ⇑ g :<=> f =a.e. g. (402)

Equivalence relations are interesting since they allow us to split up a space according to equivalent classes of objects
within the set. We define the quotient space of a set, M/ ⇑ to be the set of all m ≃ M for which mi ⇑ m j. If we take an
equivalence class on L P to be those functions satisfying Equation (402), then we define a new space LP such that,

LP = L P/ ⇑= {[ f ]⇑| f ≃ L P}. (403)

Although we will not explicitly prove this, LP inherits a norm from L P such that,

‖·‖p : LP ⇓ R (404)

[ f ]⇑ ⇓ ‖[ f ]⇑‖p := {{ f}}p. (405)

It can the be shown that LP is in fact a Banach space, and by the Holder inequality it is even a Hilbert space for p = 2
(the inner product is sesqui-linear). In fact, all of quantum mechanics of a particle in three dimensions rests on the
L2(R3,!(OR),) 3) Hilbert space.

D.1.3 Adjoints

The adjoint A∝ : DA∝ ⇓ H of a densely defined operator A : DA ⇓ H is defined such that,
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DA∝ := {. ≃ H |∞% ≃ DA ̸+ ≃ H : (. ,A%) = (+ ,%)} (406)

where the operator A∝. = + . Prove that A ∀ B implies that B∝ ∀ A∝.

Proof. A ∀ B implies that DA ∀ DB and ∞% ≃ DA B acts on % in the same manner: A% = B% . Let . ≃ DB∝ . Then
∞% ≃ DA ∀ DB we have,

(. ,B%) = (. ,A%). (407)

But by the definition of DA∝ ,

DA∝ := {. ≃ H |∞% ≃ DA ̸+ ≃ H : (. ,A%) = (+ ,%)} (408)

we must have that . ≃ DA∝ . This implies that DB∝ ∀ DA∝ and B∝ ∀ A∝.

A densely defined operator is called symmetric (in physics literature, Hermitian) if ∞% ,& ≃ DA : (% ,A& ) = (A% ,& ).
We can easily show that if a densely defined operator A is symmetric that its adjoint is an extension A ∀ A∝.

Proof. Let A : DA ⇓ H be a symmetric opertor such that, ∞% ,& ≃ DA : (% ,A& ) = (A% ,& ). Then let . ≃ DA. By the
definition of DA∝ ,

DA∝ := {. ≃ H |∞% ≃ DA ̸+ ≃ H : (. ,A%) = (+ ,%)} (409)

we must have that . ≃ DA∝ so that DA ∀ DA∝ . Since A is symmetric, we also have that A∝. = A. so that A ∀ A∝.

A self-adjoint operator is an operator that is equal to its adjoint, A = A∝. An interesting property of self-adjoint
operators are that they cannot be further extended to some other operator. To see this,

Proof. Assume that B is a self-adjoint extension of A. Then,

A ∀ B = B∝ ∀ A∝ = A. (410)

The notion of closable, closure, and closed are important to understanding the behavior of operators. We introduce the
following three definitions:

1. Closable: A densely defined operator is closeable if its adjoint A∝ is also densely defined.

2. The closure of a closeable operator A is A∝∝.

3. An operator A is closed if A = A∝∝.

Show that if A is symmetric that A∝∝ ∀ A∝.

Proof. A symmetric means that A ∀ A∝. But by our previous result we know that A∝∝ ∀ A∝ and we are done.

A symmetric operator A is called essentially self-adjoint if its closure A∝∝ is self-adjoint. An interesting result is that
for an essentially self-adjoint operator A the closure A∝∝ is the unique self-adjoint extension of A.

Proof. We know that A ∀ A∝∝ by our previous theorem. Assume there is some other self-adjoint extension B so that
A ∀ B = B∝. But then B∝∝ ∀ A∝ or equivalently A∝∝ ∀ B∝∝∝ = B. But since A∝∝ cannot be further extended we must
have that B = A∝∝.
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We can quickly check if a symmetric operator A has self-adjoint extensions by evaluating its defect indices. If the
defect indices coincide, then there are self-adjoint extensions of A, and if they are different there are none. For the
special case where both defect indices are zero, there exists a unique such extension.

d+ = dim(ker(A∝ ↓ i)) (411)

d↓ = dim(ker(A∝+ i)). (412)

D.1.4 The Spectral Theorem

As we will see in the axioms of quantum mechanics, the possible measurement values are those in the spectrum, !(A)
of an observable A. A common task in any quantum mechanical calculation is to determine the spectra of one or several
self-adjoint operators. In this section, we will first introduce important definitions related to the spectra of operators and
then proceed to the spectral theorem.

The Resolvent Set and Spectrum

First, define the resolvent map of a closed operator A = A∝∝ as the map,

RA : #(A)⇓ L (H ,H ) (413)

z ≃ C ′↓⇓ (A↓ z · idDA)
↓1 (414)

where #(A)∀C is known as the resolvent set. Hence, the resolvent set is all the complex numbers where (A↓z · idDA)
↓1

exists and is a bounded linear map from H ⇓ H . The complement of the resolvent set is called the spectrum,
!(A) = C\#(A). This means that the spectrum is just the set of complex numbers where (A↓ z · idDA)

↓1 does not exist.
The spectrum of an operator on a finite dimensional vector space is precisely equal to the set of eigenvalues, but for
infinite dimension spaces this is not necessarily the case. All that we know is that if the eigenvalues of the self-adjoint
operator exist, they must be in the spectrum.

We define the total spectra !(A) as the union of pure point, point imbedded in a continuum and purely continuous
spectra such that,

!(A) = !pp △!pic △!pc (415)

with precise definitions given by,

1. !pp := {z ≃ C|ran(A↓ z) = ran(A↓ z) ⇐= H }

2. !pic := {z ≃ C|ran(A↓ z) ⇐= ran(A↓ z) ⇐= H }

3. !pc := {z ≃ C|ran(A↓ z) ⇐= ran(A↓ z) = H }

We now arrive at an important theorem.
Theorem D.9. The point spectrum of a self-adjoint operator A has as its elements precisely the eigenvalues of A.

Proof. First, show that if ) is an eigenvalue of A then ) ≃ R. Consider, for A. = ). , that,

) (. ,.) = (. ,).) = (. ,A.). (416)

But if A is self-adjoint, we have,

(. ,A.) = (A. ,.) = (. ,A.) = (. ,).) = ) (. ,.) = ) (. ,.). (417)

Of course, since . ⇐= 0 we must have ) = ) which implies ) ≃ R. Now suppose that ) is indeed an eigenvalue of A.
Then,
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ker(A↓) ) ⇐= {0}H . (418)

But then,

ker(A↓) ) = ker(A∝ ↓) ) = ker((A↓) )∝) = ran(A↓) )∃ = ran(A↓) )∃ (419)

which implies that,

(ran(A↓) )∃)∃ = ran(A↓) ) ⇐= {0}∃H = H (420)

which by definition means that ) ≃ !pp(A). Conversely, suppose that ) ≃ C is not an eigenvalue of A. Then ) is not an
eigenvalue either. By a manner similar to the previous statement we obtain,

ker(A↓) ) = {0}H (421)

(ran(A↓) )∃)∃ = ran(A↓) ) = {0}∃H = H (422)

which means that ) /≃ !pp(A) and we are done.

Projection-Valued Measures

A projection-valued measure (PVM) is a map from the Borel ! -algebra on the reals to the bounded linear maps on a
Hilbert space, P : !(OR)⇓ L (H ,H ), that satisfies the following properties:

1. ∞Ω ≃ !(OR), P(Ω)∝ = P(Ω)

2. ∞Ω ≃ !(OR), P(Ω) ¬P(Ω) = P(Ω)

3. P(R) = idH

4. ∞Ω ≃ !(OR) ⇔ Ω = ∅n↔1Ωn implies ∞. ≃ H : ∀n↔1(P(Ωn).) = P(Ω).

Many of the useful properties of PVMs are listed below:

1. P( /0) = 0H where 0H : H ⇓ H which takes an element in the Hilbert space and returns the 0 on H .
2. P(R\Ω) = idH ↓P(Ω)

3. P(Ω1 △Ω2)+P(Ω1 ▽Ω2) = P(Ω1)+P(Ω2)

4. P(Ω1 ▽Ω2) = P(Ω1) ¬P(Ω2)

5. Ω1 ∀ Ω2 implies ran(P(Ω1)) ∀ ran(P(Ω2))

Finally, one piece of notation that we will find useful is that P() ) := P((↓!,) ]). Recall that P takes an element of the
Borel ! -algebra which is generated by the half open intervals (↓!,) ].
Now, we introduce the concept that a PVM can be used to define complex- and real-valued Borel measures. For instance,
a complex-valued Borel measure can be induced such that,

∞. ,/ ≃ H , µ. ,/ : !(OR)⇓ C (423)

where µ. ,/ maps an element Ω of the Borel-! -algebra into the inner product (. ,P(Ω)/ ),

Ω ⇓ µ. ,/ := (. ,P(Ω)/ ). (424)

Trivially, a real-valued Borel measure can be induced ∞. ≃ H so that, µ. := µ. ,. .

We now proceed to discuss integration of PVMs for simple, bounded and unbounded measurable functions f : R ⇓ C.

Integration of Simple Functions: Recall that f : R ⇓C is called simple if it has a decomposition f (R) = { f1, ..., fn}∀C
such that,
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f =
N

∀
n=1

fn ·0preim f ({ fn}) (425)

where clearly the function f can be written as a sum of complex-values by their respective characteristic functions on
the pre-image of f . The integral of such a function with respect to a PVM is defined as,

∫

R
f dP :=

N

∀
n=1

fn ·P(preim f ({ fn})) (426)

which is easily observed to have the following properties:

1. For any 0Ω with Ω ≃ !(OR) the integral over 0Ω is just the PVM acting on Ω so that,
∫

R
0ΩdP = P(Ω). (427)

2. ∞. ,/ ≃ H ,

(. ,
(∫

R
f dP

)
/ ) =(. ,

N

∀
n=1

fn ·P(Ωn)/ )

=
N

∀
n=1

fn(. ,P(Ωn)/ )

=
N

∀
n=1

fn ·µ. ,/ (Ωn)

=
∫

R
f dµ. ,/ .

(428)

Integration of Bounded Borel Functions: Consider the Banach space of measurable functions B(R) := { f : R ⇓
C|‖ f‖! < !}. Note that the space of simple measurable functions from the real to complex numbers is a dense subset
of B(R), which means that there exists a unique extension of


dP to B(R) by the Bounded Linear Transformation

theorem,

∫
dP :

Banach︷ ︸︸ ︷
B(R)⇓

Banach︷ ︸︸ ︷
L (H ,H ) (429)

with the following properties:

1.


R 1dP = idH

2.


R( f ·g)dP =


R f dP¬


R gdP

3.


R f dP = (


R f dP)∝

The first two properties can be called a C∝-algebra homomorphism.

Integration of Unbounded Borel Functions: The integral over the PVM has been shown to send a bounded Borel
function to a bounded, linear operator


f dP. However, we will now define a construction that also applies to unbounded

Borel functions. Let f : R ⇓ C be a measureable, unbounded Borel function. Define the linear map,

∫
f dP : D

R f dP
∀ H ⇓ H (430)

be defined on the dense linear subset D
R f dP

:= {. ≃ H |

| f |2dµ. < !} which takes an element . ≃ H to its

integral,
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. ′⇓
(∫

f dP
)

. := lim
n⇓!

[(∫

R
fndP

)
.
]

(431)

where the fn := 0{x≃R|| f (x)|↘n} f . Since the integral is Cauchy in H , the integral has the following properties:

1.
(


f dP
)∝

=


f dP.

2. ∞% ≃ C, we have,

%
∫

f dP+
∫

gdP ∀
∫
(% f + g)dP (432)

with equality when f ,g are bounded. If f ,g are unbounded then the right-hand side is an extension of the
left-hand side.

3. (


f dP) ¬ (


gdP) ∀

( f ¬g)dP with equality when f ,g are bounded.

The Inverse Spectral Theorem: The inverse spectral theorem can now be stated as a precursor to the proof of the spectral
theorem. Given a PVM, P, we can construct a self-adjoint operator,

AP :=
∫

idRdP (433)

since,

A∝
P =

(∫
idRdP

)∝
=

∫
idRdP =

∫
idRdP = AP. (434)

Now we want to go backwards from the previous result; namely, we want to actually find this P given some self-adjoint
operator A. First we introduce the concept of spectrally decomposable self-adjoint operators. A self-adjoint is called
spectrally decomposable if there exists a projection-valued measure P such that,

A =
∫

idRdP (435)

like what we have in the inverse spectral theorem. Then for any measurable f : R ⇓ R we define the application of the
real-valued function to the spectrally decomposable self-adjoint operator as,

f (A) :=
∫

f () )P(d) ) =
∫

f ¬ idRdP (436)

with,

f (A) : D
f dP ⇓ H (437)

where the domain is given by,

D
f dP = {. ≃ H |

∫
| f |2dµ.} (438)

and µ. is the real-valued Borel measure induced by (. ,P(Ω).).

But how do we reconstruct a projection-valued measure from a spectrally decomposed self-adjoint operator? Let
A =


R )P(d) ) for some projection-valued measure P. Then the resolvent RA(z) for z ≃ #(A) ∀ C can be written as,

RA(z) = (A↓ zidH )↓1 = rz(A) =
∫

R
rzdP (439)

where rz(A) is a function from rz(A) : C ⇓ C takes some complex number ) ⇓ 1
)↓z . Then ∞. ≃ H , we can write,
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(. ,RA(z).) =
∫

R
rzdµ. =

∫

R

1
) ↓ z

dµ. . (440)

Such a function has special properties since it is a Herglotz function, that is, that it maps the upper half of the complex
plane into itself,

(. ,RA(z).) : C+ ⇓ C+ (441)

where C+ := {z ≃ C| Im(z) ↔ 0}. This allows us to reconstruct a real-valued Borel measure from the object
(. ,RA(z).) ↔ 0. To see this, consider that,

lim
∋⇓0+

1
∀

∫ t2

t1
dt Im(. ,RA(t + i∋).) = lim

∋⇓0+

1
∀

∫ t2

t1
dt

∫

R

∋
|) ↓ t ↓ i∋|2

µ. (d) ) (442)

where Fubini’s theorem allows us to exchange the integrals so that,

= lim
∋⇓0+

1
∀

∫

R

∫ t2

t1
dt

∋
|() ↓ t)2 + ∋2|µ. (d) ) = lim

∋⇓0+

∫

R

1
∀

arctan
(

t ↓)
∋

)
t2

t1

µ. (d) ) (443)

which in the limit as ∋ ⇓ 0 is simply the sum of two characteristic functions (by virtue of the two competing arctan
terms for t1 and t2),

lim
∋⇓0+

1
∀

∫ t2

t1
dt Im(. ,RA(t + i∋).) =

∫

R

1
2
(0(t1,t2) + 0[t1,t2])µ. (d) ). (444)

Thus, we have the following theorem:
Theorem D.10. Stieltjes Inversion Formula: For Herglotz functions µ. : !(OR)⇓ R+

0 , we can recover the real Borel
measure from the resolvent set using,

µ((↓!,) ]) = lim
∃⇓0+

lim
∋⇓0+

1
∀

∫ )+∃

↓!
dt Im(. ,RA(t + i∋).). (445)

Proof. The right hand side is just,

= lim
∃⇓0+

∫

R

1
2
(0(↓!,)+∃ ) + 0[↓!,)+∃ ])µ. (d) ) (446)

which by the theorem of dominant convergence is just,

=
∫

R
(0(↓!,) ])µ. (d) ) (447)

just gives us µ((↓!,) ]) by definition.

Up to this point, we know that given some spectrally decomposable, self-adjoint operator A =


R idRdP, that P can be
recovered from A by virtue of (. ,P(Ω)/ ) =


0Ωdµ. ,/ where µ. ,/ is the complex Borel measure.

Theorem D.11. The Spectral Theorem: For any self-adjoint operator A : DA ⇓ H , there is a unique projection-valued
measure PA : !(OR)⇓ L (H ⇓ H ), such that A =


R idH dPA.

Proof. To construct a projection-valued measure from a self-adjoint operator, it thus remains to show that (. ,RA(·).)
is Herglotz for any self-adjoint operator A, that (. ,P(Ω)/ ) :=


0Ωdµ. ,/ is indeed a projection-valued measure, and

that this projection-valued measure is unique. We will first begin by proving a few lemmas that will be useful later in
the proof.
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Lemma D.1. The First Resolvent Formula: For any operator A : DA ⇓ H and a,b ≃ C ≃ #(A), we have,

RA(a)↓RB(b) = (a↓b)RA(a) ¬RA(b) (448)

or equivalently,

RA(a)↓RB(b) = (a↓b)RA(b) ¬RA(a). (449)

Proof. Note that,

(A↓a)↓1 ↓ (a↓b)(A↓a)↓1(A↓b)↓1 = (A↓a)↓1(idH ↓ (a↓b)(A↓b)↓1) (450)

which is of course,

(A↓a)↓1(idH ↓ (a+A↓A↓b)(A↓b)↓1) = (A↓a)↓1(A↓a)(A↓b)↓1 = (A↓b)↓1 (451)

which proves this first assertion known as the "first resolvent formula".

Lemma D.2. (. ,RA(·).) is Herglotz for any self-adjoint operator A.

Proof. Let z ≃ C+ and F(z) = (. ,RA(·).) =


R
1

)↓z dµ. . Then just notice that,

ImF(z) = Imz
∫

R

1
|) ↓ z|2

dµ. ≃ C+. (452)

Lemma D.3. (. ,P(Ω)/ ) :=


0Ωdµ. ,/ is a unique projection-valued measure constructed from A.

Proof. The Stieltjes inversion formula can provide a unique real Borel measure from the resolvent set, from which
(. ,P(Ω)/ ) is uniquely determined.

Putting all of this together, we can prove the spectral theorem in its entirety. First, we can define a real-valued Borel
measure ∞. ≃ H such that,

µA
. : !(OR)⇓ R (453)

µA
. ((↓!,) ]) := lim

∃⇓0+
lim

∋⇓0+

1
∀

∫ )+∃

↓!
dt Im(. ,RA(t + i∋).) (454)

since µA
. is Herglotz (Lemma D.1) and where RA is the resolvent map which takes an complex element of the resolvent

set to a bounded linear map on H in the following way,

RA : #(A)⇓ L (H ) (455)

RA(z) := (A↓ zidH )↓1. (456)

Then, we construct a complex-valued Borel measure via the polarization formula such that ∞. ,/ ≃ H and all Borel
sets Ω ≃ !(OR),

µ. ,/ : !(OR)⇓ C (457)
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µ. ,/ (Ω) :=
1
4
[µ.+/ (Ω)↓µ.↓/ (Ω)+ iµ.↓i/ (Ω)↓ iµ.+i/ (Ω)]. (458)

Finally, we can define the unique projection-valued measure (Lemma D.2) such that ∞. ,/ ≃ H,

PA : !(OR)⇓ L (H ) (459)

(. ,PA(Ω)/ ) :=
∫

0Ωdµ. ,/ (460)

where 0 is the characteristic function. Thus, we have constructed the unique projection-valued measure from a
self-adjoint operator and we are done.

The consequences of the spectral theorem to quantum theory are immensely important. First, we will take as an axiom
that the observables of a quantum mechanical system are given by the self-adjoint linear maps on the Hilbert space
associated with a quantum system. Then, the probability of the system being in some state # is defined as the trace of
the unique projection-valued measure PA induced by self-adjoint operator A composed with # . The only remaining
axioms related to unitary and projective quantum dynamics serve to evolve the quantum system in time and "collapse"
the system into some observation at measurement time tm, respectively.

D.2 An Axiomatic Approach to Quantum Mechanics

Axiom 1. With every quantum system there is associated a complex Hilbert space (H ,+, ·, (·, ·)), with states that are
all positive, trace-class, linear maps # : H ⇓ H for which Tr(#) = 1

The Hilbert space is equipped with addition, scalar multiplication, and a sesqui-linear inner product (Hermitian, linear,
and non-negative) and is complete.
Axiom 2. The observables of a quantum system are the self-adjoint linear maps A : DA ⇓ H where DA is some
densely defined subset of H . Self-adjointness is defined so that the map A coincides with its adjoint map A∝ so that,

DA∝ := {. ≃ H |∞% ≃ DA ̸1 ≃ H : (. ,A%) = (1 ,%)} (461)

A∝(.) = 1 . (462)

Axiom 3. The probability that a measurement of an observable A on a system is in the state # yields the result in the
Borel set E ℜ R is given by,

µA
# (E) := Tr(PA(E) ¬#) (463)

where PA(E) is the unique projection-valued measure that is associated with a self-adjoint linear map A according to
the spectral theorem. Furthermore, the composition PA(E) ¬# is again trace-class.
Axiom 4. Unitary dynamics occur during time intervals (t1, t2) during which no measurement occurs such that,

#(t2) = U (t2 ↓ t1)#(t1)U ↓1(t2 ↓ t1) (464)

where the time evolution operator is written as U (t) = e
↓iH t

h̄ .
Axiom 5. Projective dynamics occur when a measurement is made at some time, tm. Then the state immediately after
the measurement of an observable A is,

#a f ter :=
PA(E)#be f orePA(E)

Tr(PA(E)#be f orePA(E))
. (465)
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The idea is just to find some self-adjoint operator that corresponds to a physical observable, use the spectral theorem
to find a unique projection-valued measure, and then calculate the probability of the observation, time-evolution of
the system, and projective dynamics of the system according to these axioms. The content of quantum theory then is
to construct self-adjoint operators that correspond to physical observables / experimental measurements. This task is
non-trivial and forms the basis of all of quantum theory.
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