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Abstract

Charge scaling, also denoted as the electronic continuum correction, has proven

to be an efficient method of effectively including electronic polarization in force field

molecular dynamics simulations without additional computational costs. However,

scaling charges in existing force fields, fitted at least in part to experimental data, leads

to inconsistencies such as overscaling. We have, therefore, recently developed a 4-site

water model consistent with charge scaling, i.e., possessing the correct low-frequency

dielectric constant of 45. Here, we build on top of this water charge scaled models

of biologically relevant Li+, Na+, K+, Ca2+, Mg2+ cations and Cl−, Br−, and I−,

employing machine learning to streamline and speed-up the parameterization process.

On the one hand, we show that the present model outperforms the best existing charge

scaled model of aqueous ions. On the other hand, the present work points to a future

need for improving consistently and simultaneously the water and ion models within

the electronic continuum correction framework.

1

https://doi.org/10.26434/chemrxiv-2025-k63tq ORCID: https://orcid.org/0000-0002-0271-2760 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

hseara@uochb.cas.cz
pavel.jungwirth@uochb.cas.cz
https://doi.org/10.26434/chemrxiv-2025-k63tq
https://orcid.org/0000-0002-0271-2760
https://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

Effective inclusion of electronic polarization by charge scaling has been shown to improve

the description of interactions of ions in aqueous environments without additional compu-

tational costs.1–4 This so called electronic continuum correction (ECC) can, in particular,

fix overbinding pertinent to high charge density ions like lithium, calcium, magnesium, and

others described by standard non-polarizable force fields.5–8 While this correction is well

physically justified – it is equivalent to immersing the system into a dielectric continuum

with the high-frequency dielectric constant (of about 1.78 for water) – one has to be careful

not to overscale. Namely, existing non-polarizable water models have been parameterized

against experiment and, as a result have dielectric constants higher than what would cor-

respond purely to the dielectric response of the nuclei.9–11 In other words, (part of) the

high-frequency electronic response has been translated in an uncontrolled way to the low-

frequency nuclear rearrangements. In order to avoid potential artifacts connected with graft-

ing charge scaling on top of such water models we have recently parameterized a de novo

4-site water model better compatible with the ECC approach, i.e., possessing a dielectric

constant of 45, corresponding to the genuine nuclear response only.12 We have shown that

despite its low dielectric constant, this model, denoted as ECCw2024, performs as well as

the best existing 4-site water models, such as TIP4P/2005.11,12

In this work, we move a step further in developing from scratch a charge-scaled force

field for biomolecular simulations that is compatible from the onset with the ECC concept.

Using machine learning techniques to save computer time during parameterization, we build

parameters for the following biologically relevant ions – Li+, Na+, K+, Ca2+, Mg2+, Cl−, Br−,

and I−. By obtaining better agreement with the experimental structural, thermodynamic

and especially dynamic properties for the corresponding salt solutions than for the hitherto

best model of this type,13 we demonstrate that our systematic approach to developing charge-

scaled force fields pays off. Also, while these ion models are built upon ECCw2024 water,

we show that they perform rather well also with TIP4P/2005, demonstrating the robustness
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of our approach. Finally, by optimizing the scaling parameter within physically justified

margins, we open the path to further improving charge-scaled force fields.

Methods

Optimization process

An automated framework was utilized for the optimization process that was originally devel-

oped for parameter sampling of the ECC water model.12 A random walk algorithm was first

applied to generate 200 parameter sets, with initial values taken from the prosECCo75 force

field.14 Following this initial sampling, a differential evolution (DE) algorithm was used to

refine the parameters and achieve an optimized dataset.

Each sample was evaluated using a negative log-likelihood cost function defined as:

J(θ) =
n∑

i=1

[
n

2
log(2πσ2

i ) +
1

2σ2
i

(yi(θ)− µi)
2

]
(1)

where θ denotes the the parameter set, yi represents the target property calculated from MD

simulations, µi is denotes the corresponding reference experimental value, σi is the predefined

sample variance. In practice, all target properties were included during the optimization to

achieve a globally optimized parameter set that performed well across multiple properties,

rather than excelling at reproducing a single property.

To efficiently explore the parameter space while avoiding regions where predicted proper-

ties deviate significantly from experimental references, we integrated a local Gaussian process

(LGP) model15 with the differential evolution algorithm. DE is a population-based global

optimization method that evolves a set of candidate solutions (parameter vectors) through

mutation, crossover, and selection. In each generation, new candidate parameter sets (off-

spring, denoted θ) are generated by perturbing existing ones (parents, denoted θ′), and a

selection step determines whether the offspring should replace its parent.
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To accelerate the evaluation of new parameter sets, the LGP model was used to predict

physical properties directly, bypassing the need for full molecular dynamics (MD) simula-

tions. The LGP model was initially trained on data generated by a random-walker algorithm,

using force field parameters as input and corresponding target physical properties as output.

As the optimization progressed, the LGP model was retrained after every 50 new data points,

using the entire dataset collected so far, including both existing and newly added examples.

This active learning scheme ensured that the model continuously adapted to the expanding

and increasingly diverse data space.

In practice, consider for example a parent parameter set θ′ that has already been eval-

uated through MD simulation, resulting in a cost function value J(θ′). A new offspring

parameter set θ is generated by applying DE’s mutation and crossover steps to θ′. Before

committing computational resources to simulate θ, the LGP model estimates the physical

properties and computes a predicted cost J(θ). The selection of whether to accept θ is

determined by the Metropolis-Hastings criterion:

A(θ,θ′) = min
(
1, eJ(θ

′)−J(θ)
)

(2)

A random number u ∈ [0, 1] is drawn, and if u ≤ A(θ,θ′), the offspring θ is accepted for

MD simulation and added to the training dataset; otherwise, it is rejected and discarded.

The parameters of the atomic ions were optimized against the target values, including

structural information from neutron scattering, thermodynamic properties (e.g. density),

and kinetic properties such as viscosity. Diffusion coefficients of water oxygen in the solu-

tions were also used for further validation. The atomic ions were divided into two groups

based on the methods used to measure the structure of aqueous solutions. The first group,

Li+, K+, Ca2+ and Cl−, was measured in solutions of 3m LiCl,6 6m LiCl,16 4m KCl,17 and

4m CaCl2
18 using neutron diffraction experiments with isotopic substitution (NDIS). This

method enables the estimation of partial structure factors from the total structure factor by
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assuming that solutions with identical chemical compositions, but different isotopic concen-

trations, are structurally equivalent. The second group, consisting of Na+, Mg2+, Br−, and

I−, was measured in 4m NaCl,19 3m MgCl2,
7 4m KBr, and 4m KI solutions using a ‘null’

water mixture technique.20 The ions in the first group were optimized before those in the

second group, as NDIS provides more detailed insights into ion-solution correlations.

The optimized parameters included the scaling factor and Lennard-Jones (LJ) ϵ and σ

values for cations and anions, following the Lorentz-Berthelot combination rules:

σij =
σii + σjj

2
, ϵij =

√
ϵiiϵjj. (3)

Furthermore, we included pair-specific LJ ϵ and σ between anions and water oxygen atoms, as

they improved the physical qualities of the ionic solutions. However, not all possible pairwise

parameters (i.e., cation-anion, cation-oxygen, anion-oxygen, and self-self interactions) were

explicitly included. This decision was based on two key considerations: 1. For the ionic

solutions studied here, cation–cation and anion–anion LJ interactions have minimal impact

on the target properties. Therefore, the meaningful interactions are primarily cation-anion,

cation-oxygen, and anion-oxygen, and the degree of freedom of the parameters of these are

6 (3×2), where the 2 corresponds to ϵ and σ). This is equivalent to the degrees of freedom

when considering only the combination-rule ϵ and σ for cations, anions, and anion-oxygen

pairs. 2. Including all pairwise interactions would significantly increase the dimensionality

of the parameter space, resulting in higher computational costs for achieving convergence

and generating sufficient samples to train the LGP model.

The parameters were initially sampled independently for each solution to explore the

optimal model when there were no restrictions on neither the scaling factor nor the Cl−

model, which ultimately should be shared between salt pairs. During this procedure, each

solution, such as LiCl, CaCl2 and KCl, was thus allowed to have different optimal scaling

factors and Cl− parameters. These separately optimized parameters served as training data
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for the LGP model and provided an insight into the optimal behavior of ion models in

a specific solution which would help us determine whether it would be necessary to add

cation-anion pairwise parameters during the final optimization. Then the Li+, Ca2+, K+,

and Cl− parameters were refined jointly, ensuring consistent Cl− parameters and a shared

scaling factor across all systems. We followed by optimizing Na+, Mg2+, Br−, and I− using

the established optimal scaling factor and Cl− parameters. I− and Br− were refined using

a fixed scaling factor and the optimized K+ parameters from the previous stage, aiming to

reproduce experimental behavior in 4m KI and KBr solutions. Similarly, Na+ and Mg2+

were optimized using the refined Cl− model, with experimental data from 4m NaCl and 3m

MgCl2 solutions as reference. The optimization by stages was needed due to the differences

in structural data (i.e., neutron scattering data) available for the salt solutions.

Simulation Details

Molecular dynamics simulations were performed for all accepted parameters to estimate tar-

get properties, using the GROMACS 2022 molecular dynamics package.21 The simulated

cubic box contained 2776 ECCw2024 water molecules along with cations and anions, whose

numbers were adjusted to achieve the target electrolyte concentration. Each system under-

went energy minimization followed by a 7 ns isothermal-isobaric (NPT) simulation. The

NPT simulations were performed under periodic boundary conditions at a constant temper-

ature (300 K for optimization and 298 K for validation) and pressure (1 bar). Temperature

control was achieved using the Nosé–Hoover thermostat22 with a time constant of 1 ps, while

an isotropic pressure coupling scheme was applied using the Parrinello-Rahman barostat,23

with a compressibility of 5 × 10−5 bar−1 and a time constant of 5.0 ps. Long-range elec-

trostatics and long-range Lennard-Jones potentials were calculated with the smooth particle

mesh Ewald method24 with an initial cutoff of 1.2 nm. Interactions beyond the cutoff were

calculated in reciprocal space with a fast-Fourier transform on a grid with an initial spacing

of 0.10 nm and fourth-order spline interpolation.

6

https://doi.org/10.26434/chemrxiv-2025-k63tq ORCID: https://orcid.org/0000-0002-0271-2760 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2025-k63tq
https://orcid.org/0000-0002-0271-2760
https://creativecommons.org/licenses/by-nc-nd/4.0/


Radial distribution functions (RDFs) and densities were calculated from the last 6 ns

of the NPT simulation, with the initial 1 ns excluded for equilibration. The RDFs were

calculated as

gαβ(r) = (NαNβ)
−1

Nα∑
i=1

Nβ∑
j=1

⟨δ(|ri − rj| − r)⟩ (4)

where Nα and Nβ are the total number of atom type α and atom type β, respectively.

The calculated RDFs were compared with neutron scattering results, with additional details

provided in the Supporting Information. To evaluate ion pairing in the first hydration shell

of cations, the number of contact ion pairs (CIPs) was calculated from the cation-anion RDF

as:

nCIP = 4πρ+/−(r)

∫ rmin

0

g+−(r)r
2dr (5)

where g+−(r) is the RDF between cations and anions, and ρ+/− is the number density of

cations or anions. The upper limit of the integral, rmin, corresponds to the position of

the first minimum in g+−(r). If no distinct peak is observed in g+−(r) within the first

hydration shell, which is defined based on the ion-water RDF, nCIP is considered to be zero.

The coordination number (CN), representing the total number of atoms (water oxygen or

counterions) in the first hydration shell, was computed as:

nCN = nCIP + 4πρH2O
(r)

∫ rMO
min

0

gMO(r)r
2dr (6)

where gMO is the ion-oxygen RDF, ρH2O
is the number density of water molecules, and rmin

corresponds to the first minimum in gMO.

The final frame from the NPT simulation was used as the starting structure for three

independent 2 ns non-equilibrium simulations with a cosine acceleration to calculate vis-

cosity.25 The settings were identical to those of the NPT simulations, except that pressure

coupling was disabled, and a cosine acceleration amplitude of 0.020 nm/ps2 was applied.

To further evaluate the optimized models, additional simulations were performed with
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the optimal parameters. Equilibrium and non-equilibrium simulations were conducted for

all salt solutions at concentrations of 0.24 m, 1 m, 3 m, and 4 m, with the same settings

as those used during the optimization process. For LiCl, an additional concentration of

6 m was included. To ensure accurate estimates of means and standard deviations, 25

independent 2 ns non-equilibrium simulations with cosine acceleration were conducted for

viscosity calculations. Similarly, 25 independent 2 ns NVT equilibrium simulations were

performed to calculate the diffusion coefficient of water oxygen atoms in each solution.26

These NVT simulations followed the same settings as the NPT simulations, except that

pressure coupling was disabled. The diffusion coefficient was calculated using the Einstein

approach:

D = lim
t→∞

d

dt

〈
1

6N

N∑
i=1

|ri(t)− ri(0)|2
〉

(7)

where ri(t) and ri(0) represent the position of the i-th particle at time t and a reference time

t=0, respectively, and N is the total number of the particles in the system. A finite-size

correction was applied according to the method proposed by Yeh and Hummer:27

D∞ = D(L) +
kBTξ

6πηL
(8)

where D∞ is the infinite system size self-diffusion coefficient, D(L) is the self-diffusion coeffi-

cient calculated for a cubic box with edge length L, η is the shear viscosity obtained from the

cosine acceleration non-equilibrium simulations, and = 2.837298 is a dimensionless constant.

It’s important to note that this correction term incorporates simulation-derived parameters,

which may introduce additional sources of error in estimating D∞. To assess this potential

error, we compared the correction calculated using the edge length and shear viscosity of an

ideal solution box, matching experimental density and viscosity values, and found that the

additional error introduced by the simulation-derived L and η in the correction term was

less than 2%. Therefore, we have included the corrected results in our analysis.

We repeated the simulations for our optimal models using the TIP4P2005 water model
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to test the transferability of our parameters to other water models. Additionally, simulations

were carried out for the Madrid2019 ion models with both ECCw2024 and TIP4P2005 water

models as references for comparison.

Results and discussion

Optimization of a ECC compatible ion force field

Building on the recently developed ECCw2024 water model, we now turn to the development

of a ECC-compatible force field for ions. In this work, we systematically optimize the charge

scaling factor and the Lennard-Jones (LJ) parameters σ and ϵ for a set of biologically and

technologically relevant ions, namely, the Li+, Na+, K+, Ca2+, and Mg2+ cations and the Cl−,

Br−, and I− anions. To enhance the transferability of the resulting force field, we prioritize

the use of combination rules over the inclusion of ion-specific pair interactions. Specific

pair parameters are incorporated only when they yield clear and significant improvements

in accuracy.

Our optimization method targeting thermodynamic, dynamic, and structural properties

yielded a plethora of acceptable models, representing a sizable convex hull in the parameter

space. Figure 1 shows the distribution of scaling factors for all accepted samples during

the optimization. These acceptable models exhibit scaling factors ranging from 0.7 to 0.9.

The top-performing models have scaling factors between 0.78 and 0.83, indicating that good

models are abundant within this range when optimized with our ECCw2024 water model.

The scaling factor 0.81 emerged as both the optimal and the most populated one among the

top 25 models ranked by the cost function.

The fact that the optimal scaling factor of 0.81 is somewhat higher than the value of

0.75 following from the high-frequency dielectric constant of water is consistent with our

recent finding of a slightly attenuated dielectric screening pertinent to closely interacting

ions.28 Indeed, our optimization cost function incorporates neutron diffraction with isotopic
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Figure 1: Distribution of scaling factors for the top 25, 50, 75, 100, and all samples from the
final optimization stage of ions including Li+, Na+, K+, Ca2+ and Cl−.

substitution data (i.e., first order difference of real-space signals), which primarily reflect

the first and second hydration shells of solvated ions. Our optimal scaling factor also aligns

closely with a recently developed scaled-charge potassium model with a scaling factor of 0.78,

which shows excellent agreement with experimental conductivity data critical to simulate

potassium channels.29

The set of parameters for the best-performing model, denoted as ECCions81, is presented

in Table 1. It is of interest to compare these parameters with those of the Madrid2019 force

field,13 probably the best-performing charge scaling ion models to date. Besides the difference

in scaling factors (0.85 for Madrid2019), a notable distinction between the ECCions81 model

and Madrid2019 lies in the resulting LJ parameters of our ions in water (Table S3). Cations

in our ECCions81 model have systematically larger LJ σ values compared to Madrid2019,

with an average increase of 0.17 Å for monovalent cations and 0.38 Å for divalent cations,

reflecting a larger effective ionic radius in water. In contrast, our ECCions81 anions exhibit

smaller σ values compared to Madrid2019, with an average reduction of 0.5 Å. Additionally,

the difference between cation-oxygen and cation-anion σ values is significantly smaller in our

ECCions81 model than in Madrid2019.

These differences lead to a greater tendency for contact ion pairing within the first hy-

dration shell in the ECCions81 model, while the overall coordination number remains nearly
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Table 1: Parameters of the ECCion81 Force Field. Charges and Lennard-Jones σ, ϵ param-
eters for electrolyte solutions in ECCw2024 water, including Li+, Na+, K+, Mg2+, Ca2+,
Cl−, Br−, and I−. Since the pairwise Lennard-Jones parameters between water oxygen and
cations follow the Lorentz-Berthelot combination rules, the parameters for ECCw2024 oxy-
gen are also listed. For anions, specific anion-oxygen pairwise Lennard-Jones parameters are
provided.

Charges (e)
qLi = qNa = qK = 0.81, qMg = qCa = 1.62, qCl = qBr = qI = −0.81
Ion σ (nm) ϵ (kJ/mol) Ion σ (nm) ϵ (kJ/mol)
Li+ 0.151568 0.217304 Cl− 0.393492 0.714723
Na+ 0.237287 0.154682 Cl-O 0.352611 0.723797
K+ 0.297000 0.844526 Br− 0.441421 1.515692
Mg2+ 0.123364 4.504426 Br-O 0.360099 1.172294
Ca2+ 0.240765 0.900759 I− 0.476172 1.295655
O [ 12] 0.315480 0.761154 I-O 0.372802 0.921039

unchanged compared to Madrid2019 (Table 2). This increase in contact ion pairing affects

radial distribution functions and significantly influences transport and dynamic properties

of the solutions, which are explored in detail in the following sections.

Table 2: Comparison of CIP and CN values for ECC and Madrid2019 across different salt
solutions.

Solution ECCions81 Madrid2019
CIP CN CIP CN

6m LiCl 0.43 4.03 0 3.99
3m LiCl 0.22 4.01 0 4.00
3m MgCl2 0.72 6.05 0 6.01
4m CaCl2 1.04 6.35 0.01 7.31
4m KCl 0.83 6.85 0.35 6.72
4m NaCl 0.59 5.35 0.04 5.43
4m KBr 0.91 6.94 0.08 6.58
4m KI 0.52 6.90 0 6.31

Densities and dynamic properties

Our ECCions81 ions model demonstrates excellent agreement with experimental density

values, with deviations typically below 0.5%, comparable to the performance of Madrid2019

(Figure 2 and Table S4). This high level of accuracy is consistently observed across most
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tested solutions, including LiCl, NaCl, KI, and MgCl2, where both models align closely with

experimental measurements. In KCl and KBr solutions, ECCions81 slightly underestimates

the density by approximately 0.7%, equivalent to a difference of 10 kg/m3. A more notable

deviation occurs in CaCl2 solutions, where the ECCions81 model underestimates the density

by 3.5% at 4 M, corresponding to a difference of 50 kg/m3 from experimental values. Note

that Madrid2019 accurately reproduces the experimental densities for these solutions.

ECCion81/ECCw2024 Madrid2019/TIP4P2005
40

20

0

20

40

60

Si
gn

ed
 %

 E
rro

r

DH2O

Figure 2: Signed percentage errors in the self-diffusion coefficient of water (DH2O), vis-
cosity (η), and density (ρ) predicted from simulations using two water-ion models: EC-
Cion81/ECCw2024 and Madrid2019/TIP4P2005, with experimental data as the reference.
Violin plots represent the distribution of errors across all tested electrolyte solutions at vari-
ous concentrations. Horizontal bars indicate the medians, and the full range of data is shown
to highlight variability and systematic deviations.

The ECCions81 model outperforms Madrid2019 in reproducing the concentration depen-

dence of both viscosity and water self-diffusion coefficients (DOW ) across all tested electrolyte

solutions (Figure 2 and Tables S5 and S6). Viscosity deviations in ECCions81 generally re-

main below 10%, while Madrid2019 frequently overestimates viscosity by more than 25% at

high concentrations. The discrepancy is particularly severe for MgCl2, where Madrid2019

deviates by over 60% at 4 m, in contrast to ECCions81, which closely matches the experimen-

tal data. In LiCl solutions, ECCions81 shows somewhat higher deviations in viscosity (up to

16% at 6 m), yet still significantly improves on Madrid2019, which deviates by 64%. For KCl,

KBr, and KI, where viscosity changes only weakly with concentration, the ECCions81 model

accurately captures the trend with deviations below 10%, whereas Madrid2019 overshoots
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by more than 30%. Despite not being an explicit optimization target, we observe similar

trends for water diffusion (DOW ). Namely, ECCions81 maintains deviations within 10% for

most salts, while Madrid2019 underestimates water mobility, with errors reaching as much as

40%. Again, 6 m LiCl is the most extreme case, with deviations of 15% for ECCions81 and

41% for Madrid2019. ECCions81 also better captures the weak concentration dependence

of DOW in KCl, KBr, and KI solutions, whereas Madrid2019 consistently overestimates the

effect of salt concentration for dynamic properties.

Comparisons to neutron scattering data

This section compares the simulation results of the first-order difference functions in r-space

and Q-space for Cl− with neutron diffraction data (i.e., NDIS experiments). While both

representations contain the same information, they emphasize different aspects: Q-space

highlights peak positions related to phasing, whereas r-space facilitates the interpretation of

peak heights and the overall understanding of the molecular surroundings of the ions.

Overall, we see that ECCions81 systematically matches better experimental peak heights

in r-space and phases in Q-space, with Madrid2019 consistently overestimating peak intensi-

ties in r-space. ECCions81 also improves the peak positions for Br− and I− and significantly

reduces the artificial O–O peak at 2.8 Å (Figures S15 and S17). These improvements stem

from moderate ion pairing in ECCions81, which weakens ion-water correlations.

Below, we focus on detailed comparisons between the simulation results and neutron

diffraction experiments. We discuss primarily first-order difference functions (both in real

and reciprocal spaces) where we possess high quality experimental data for Li+, K+, Ca2+,

and Cl−. Less direct neutron diffraction data are available to us for Mg2+, Br−, I− and Na+

ions, as discussed briefly below and further in the Supporting Information.
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Figure 3: First-order difference functions ∆GK(r) (left) and ∆SK(Q) (right) for simulations
of 4m KCl solution using the ECCions81 model with the ECCw2024 water model (red) and
the Madrid2019 ion model with the TIP4P/2005 water model (blue), and experimental data
(black). Gray shading indicates regions where the experimental signal consists of only noise
(in r-space) or falls outside the measurement range (in Q-space).

Potassium

Monovalent ions, particularly the relatively large K+ ions that exhibit low charge density,

are generally considered straightforward to model. In principle, their weakly bound coordi-

nation shells should not pose a major challenge for classical force fields and charge scaling

is expected to play only a minor role in accurately capturing their solvation behavior. The

comparison between simulation results and NDIS results for 4m KCl solution is shown in

Figure 3. In r-space, Madrid2019 captures the successive dual peaks between 2.8–3.8 Å, but

significantly overestimates the height of the first peak, corresponding to the K-O correlation

(Figure S7). In contrast, ECCions81 produces a single peak rather than dual peaks with

similar overshooting intensity as the Madrid model, while the first minimum fits the exper-

imental data perfectly. Beyond this minimum, the apparent match with the experimental

data is reduced with a significant diphase. In Q-space, both models exhibit a similar struc-

ture, characterized by higher first and second peaks, deeper minima between these peaks,

and a reduced signal in the low-Q region compared to experimental values. While the low-Q

signal for Madrid2019 is slightly higher than that of ECCions81, both models deviate from
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experimental data in this region.

A more detailed comparison of K+ simulation results with experimental data is provided

in the Supporting Information, including a reference model that shows better agreement with

the r-space data but yields a less accurate density. Overall, despite the anticipated simplicity

of the description of potassium ions none of the existing models fit perfectly the experimen-

tal data. Still, ECCions81 improves structural agreement compared to Madrid2019, while

maintaining reasonable density predictions.

Calcium
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Figure 4: First-order difference functions ∆GCa(r) (left) and ∆SCa(Q) (right) for simulations
of 4m CaCl2 solution using the ECCions81 model with the ECCw2024 water model (red)
and the Madrid2019 ion model with the TIP4P/2005 water model (blue), and experimental
data (black). Gray shading indicates regions where the experimental signal consists of only
noise (in r-space) or falls outside the measurement range (in Q-space).

Divalent cations with high-density charges are known to be harder to model, with charge

scaling playing a more relevant role.4 First-order difference functions of Ca2+ in a 4m CaCl2

solution in both r-space and Q-space were calculated and compared with experimental data,

with the results shown in Figure 4. In r-space, both ECCions81 and Madrid2019 models

capture the two prominent peaks at approximately 2.3 Å and 3.0 Å, as well as the third minor

peak at around 4.8 Å. The first two peaks correspond to the Ca-O and Ca-H correlations in
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the first hydration shell. In contrast, the third peak arises from a combination of Ca-O, Ca-

H, and Ca-Cl correlations in the second hydration shell, as shown in Figure S6. The stronger

Ca-Cl pairing in ECCions81 reduces the correlations between Ca and water, introduces a

small bump at the local minimum at around 2.6 Å, and lowers the height of the first and

second peaks, bringing them closer to experimental values. In contrast, the Madrid2019

model does not exhibit any Ca-Cl pairing.

In Q-space, ECCions81 shows better overall agreement with experimental data than

Madrid2019 across the full Q-range, particularly in capturing signal amplitudes. Madrid2019

exhibits slightly better phase agreement around 1 Å
−1
—a region corresponding to long-range

structural correlations in r-space—which may be related to its improved performance in

reproducing bulk density. It also shows improved phase alignment in the 4–7 Å
−1

range,

although the associated structural features in r-space are less clearly defined.

Lithium
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Figure 5: First-order difference functions ∆GLi(r) (left) and ∆SLi(Q) (right) for simulations
of 3m LiCl solution using the ECCions81 model with the ECCw2024 water model (red) and
the Madrid2019 ion model with the TIP4P/2005 water model (blue), and experimental data
(black). Gray shading indicates regions where the experimental signal consists of only noise
(in r-space) or falls outside the measurement range (in Q-space).

Lithium represents a special case among monovalent ions due to its small size, resulting
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in a large charge density and, consequently, in a well-defined first coordination shell. The

hydration structure of Li+ was obtained in 3 m and 6 m LiCl solutions, with comparisons

between simulation and experimental data shown in Figures 5 and S3. In r-space, both

the ECCions81 and Madrid2019 models roughly reproduce the structure of the signals at

both concentrations. Two closely spaced peaks represent the Li+-O and Li+-H correlations,

respectively, while a third broader peak arises from a mixture of Li+-O, Li+-H, and Li+-Cl

correlations (Figures S2 and S4). The Madrid2019 model overestimates the Li+-O and Li+-H

correlations, with the Li+-O peak approximately 50% higher than the experimental value

at 3 m and 100% higher at 6 m, indicating a tighter first hydration shell. In contrast, the

ECCions81 model correctly lowers the Li+-O and Li+-H peaks. While the LiO peak still

remains somewhat higher than the experimental value, the Li-H peak aligns closely with

the experimental data. The difference between the two force fields arises from the larger

σLiO in ECCions81 compared to Madrid2019 (Table S3), which also explains why the first

peak of the ECCions81 model begins at a greater distance. Li-Cl pairing in ECCions81

leads to a reduction of the water density in the first hydration shell. In Q-space, ECCions81

shows better agreement with experimental data than Madrid2019, particularly in capturing

the phase of the signal in the Q > 6 Å
−1

region at both 3 m and 6 m. Neither model

fully captures the low-Q region for the 6 m solution, which reflects long-range structural

information in r-space.

Sodium

For sodium, in order to emphasize the correlations between ions and water, the signal of 4m

NaCl, GNa(r), was subtracted from that of 4m KCl, GK(r), or 4m LiCl, GLi(r):

∆GNaK(r) = GK(r)−GNa(r)

∆GNaLi(r) = GNa(r)−GLi(r)

(9)
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Figure 6: First-order difference functions, ∆GMW (r), for simulations of various cation
or anion “M” in solutions using the ECCions81 model with ECCw2024 water (red), the
Madrid2019 ion model with TIP4P/2005 water (blue), and experimental data (black). Pan-
els (a) and (b) show ∆GMW (r) for Na+ in 4 m NaCl, subtracted by that of (a) K+ in 4 m
KCl and (b) Li+ in 4 m LiCl. Panels (c)–(e) show ∆GMW (r) for (c) Mg2+ in 3 m MgCl2,
(d) Br− in 4 m KBr, and (e) I− in 4 m KI.
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. Figure 6 presents a comparison between simulations and neutron diffraction results for

∆GKNa(r). In the corresponding Q-space data (Figure S9), a drop in the experimental base-

line at 6 Å−1 is observed due to the absence of 4 m KCl data beyond this point. Despite

this, the available experimental data are sufficient to resolve the primary peaks, whose po-

sition and height are retained after Fourier transformation into r-space. In Q-space, both

ECCions81 and Madrid2019 show phase differences relative to experiment but successfully

capture the positions and intensities of the first two major peaks. In r-space, both models

reproduce the main minima and maxima of the experimental signal. ECCions81 predicts

a shallower Na–O minimum at 2.3 Å than Madrid2019, in better agreement with experi-

ment. A broader first peak—arising from K–O and O–O correlations—is also observed in

ECCions81 compared to the experimental data (for further discussion see SI).

Figure 6 also shows a comparison between the experimental ∆GNaLi(r) and results from

simulations. ECCions81 and Madrid2019 both exhibit two distinct peaks between 1.8 and

2.7 Å, while the experimental signal shows a single, merged peak in this region. ECCions81

more accurately reproduces the experimental peak heights. Beyond 3 Å, however, ECCions81

shows a significant phase shift, whereas Madrid2019 aligns better with the experimental

features. In Q-space, a similar trend is observed (Figure S11): ECCions81 deviates from

experiment above 4 Å−1, while Madrid2019 maintains consistent agreement across the full

range. These discrepancies may partly result from inaccuracies in the O–O correlations of the

LiCl reference system, which are not fully captured in the NDIS data (for further discussion

see SI).

Magnesium

The hydration structures of Mg2+ in a solution of 3m MgCl2 obtained from simulations using

the ECCions81 and Madrid2019 models, compared with neutron diffraction data, are shown

in Figure 6. To emphasize ion-water correlations, the total signal was subtracted by the O-O

correlation in pure ”null” water.
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The ECCions81 model demonstrates better agreement with the experimental signal than

the Madrid2019 model. Specifically, the ECCions81 model accurately reproduces the position

of the first peak at 2 Å corresponding to the correlation between Mg and O (Figure S14),

although the peak height is slightly overestimated compared to the experimental data. In

contrast, the Madrid2019 model shows a significantly higher peak with a 0.1 Å deviation in

the peak position. Neither model captures the first minima at approximately 2.3 Å. A small

peak at 2.4 Å, between the first two minimas, corresponding to Mg-Cl correslations was

only observed in ECCions81, not seen in Madrid2019. Additionally, the ECCions81 model

accurately reproduces the second minima at 2.6 Å which corresponds to O-O correlations,

while the Madrid2019 model displays a high peak at this position. This indicates that the

ECCions81 model more accurately captures the influence of Mg2+ and Cl− ions on O-O

interactions. For the second main peak at around 3 Å, the ECCions81 model matches

both the height and position of the experimental data well, whereas the Madrid2019 model

shows a slight deviation in position and a significantly lower peak height. In Q-space, the

ECCions81 model also exhibits better agreement with the experimental signal compared to

the Madrid2019 model. This is particularly evident at the first peak at 2.4 Å
−1

and in

the range between 6 and 10 Å
−1
, where the ECCions81 model demonstrates better phase

matching.

It is important to note that the water exchange rate in the first hydration shell of Mg2+

is very low—on the order of milliseconds for a single exchange event. Given the limited

simulation timescales used during the optimization, it is clear that the sampling is insufficient

to fully capture such slow exchange dynamics. Since all simulations, including those using

the Madrid2019 parameters, began from the same initial structure but ultimately stabilized

in different configurations, we assume that the system relaxes into a locally stable structure

within the sampled timescale. However, this outcome should be interpreted with caution

due to potential undersampling effects.
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Chloride

Chloride is the anion present in all the solutions discussed above. This makes the Cl−–water

interaction a critical anchor point in developing the ECCion81 model. While detailed struc-

tural data are only available from NDIS measurements on a 6m LiCl solution, this dataset

serves as a valuable benchmark for directly optimizing the Cl−–water interaction.

Figure 7 compares the simulation results of the first-order difference functions in r-space

and Q-space for Cl− with NDIS data. While r-space and Q-space representations contain in

principle the same information, they emphasize different aspects. Namely, Q-space highlights

peak positions related to phasing, whereas r-space facilitates interpretation of peak heights.

In r-space, both ECCions81 and Madrid2019 models capture the first and second peaks,

corresponding to the first and second solvation shells, which are clearly separated by a deep

minimum at 2.8 Å. However, the Madrid2019 model significantly overestimates the height

of the first peak, representing the correlations between Cl− and hydrogen in water (Figure

S5b). Additionally, the phases of the first and second peaks in Madrid2019 begin and end

at shorter distances than those observed experimentally, indicating a tighter hydration shell

for Cl− compared to experiment.

In contrast, ECCions81 shows a smaller first peak, partly due to the presence of Li–Cl

contact ion pairs (CIPs) within the first hydration shell (Figure S5a), with a CIP value of 0.43

(Table 2). This pairing reduces the water density around Cl− in the first hydration shell. In

Madrid2019, such pairing is deliberately avoided, resulting in a CIP value of zero. The ECC

model also better than Madrid2019 matches the phase of the second peak, which includes

contributions from the first peaks of gClO and the second peak of gClH . Both ECCions81

and Madrid2019 models fail to fully capture the second peak’s height and position, while

also displaying a deeper minimum between the first and second peaks. The Madrid2019

model achieves a comparable peak height but exhibits a narrower width and a shorter start-

ing position, deviating from experimental observations. Conversely, ECCions81 accurately

reproduces the position of the second peak but underestimates its height.
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Figure 7: First-order difference functions ∆GCl(r) (left) and ∆SCl(Q) (right) for simulations
of 6m LiCl solution using the ECCions81 model with the ECCw2024 water model (red) and
the Madrid2019 ion model with the TIP4P/2005 water model (blue), and experimental data
(black). Gray shading indicates regions where the experimental signal consists of only noise
(in r-space) or falls outside the measurement range (in Q-space).

In Q-space, the Madrid2019 model fails to accurately capture the first peak between 2-3

Å−1, where a single peak splits into two distinct peaks. In contrast, ECCions81 successfully

reproduces the position of the first peak and provides a better match for peaks at higher Q

values, with only a phase mismatch observed around 8 Å
−1
. In the low Q region (< 2 Å

−1
),

neither model captures the signal effectively, which corresponds to long-range hydration

structures hard to be observed in the r-space signal at distances greater than 4 Å.

Bromide

Similar to MgCl2, the neutron diffraction data for KBr was processed by subtracting a

weighted signal of O-O correlations in pure ”null” water. The resulting data, along with those

obtained from MD simulations using the ECCion81 and Madrid2019 ion models, are shown

in Figure 6. In r-space, ECCions81 exhibits overall better agreement with the experimental

signal, capturing the phase of peaks and valleys more accurately. In contrast, Madrid2019

predicts a shorter Br-O distance in the first hydration shell (Figure S16). However, both

models fail to fully reproduce the amplitudes of all peaks and valleys.
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The most notable difference between ECCion81 and Madrid2019 is the peak at 2.8 Å

predicted by Madrid2019, which is absent in the experimental data and appears only as a

small bump in the ECCions81 signal—indicating that ECCion81 provides a structure closer

to the experimental one. As shown in Figure S16, this peak or bump originates from K-O

correlations, which are partially canceled by differences in O-O correlations between pure wa-

ter and the KBr solution (∆GOO). As discussed in Section Potassium Chloride, Madrid2019

overestimates K-O correlations. Here, it also exhibits larger ∆GOO) compared to ECCions81,

though these differences are insufficient to fully compensate for the overestimated K-O sig-

nal, leaving a noticeable peak at this position (for further details and discussion of Q-space

data see SI).

Iodide

The results for KI solutions are similar to those for KBr. As shown in Figure 6, Madrid2019

again exhibits a peak at 2.8 Å in r-space, originating from K-O correlations, which are

partially canceled by ∆GOO (Figure S18). ECCion81, in contrast, shows a smaller bump at

2.9 Å from the same source and achieves a better phase match for the second peak. While

both models capture the height of the first peak, neither accurately reproduces the width of

the first peak, the amplitude of the first valley at 4.3 Å, or the second peak at 5.3 Å (for

further details and discussion of Q-space data see SI).

Transferability

As emphasizes above, in parallel with structural neutron diffraction data the ECCion81

model was calibrated to reproduce also macroscopic physical properties—such as viscosity

and density—in other chloride-containing solutions, ensuring broader transferability and

consistency across diverse ionic environments.

The transferability of ECCions81 across water models was further tested using TIP4P2005.

Despite having significantly different dielectric constants, ECCw2024 and TIP4P2005 exhibit
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similar behavior for both density and viscosity (Figure S19). Consequently, the differences

in our ion model performance between these two water frameworks are minimal, with devi-

ations smaller than 1% (Tables S4 and S5). The only exception is the water self-diffusion

coefficient, where neat water simulations with ECCw2024 yield DOW values approximately

4% lower than those with TIP4P2005.12 This difference propagates to electrolyte solutions

at low concentrations (<1 m), where DOW values calculated with ECCw2024 remain 5%

lower than those obtained with TIP4P2005, as shown in Table S6. At higher concentrations

(>3 m), nevertheless, DOW values converge to similar values for both water models.

Similarly, the choice of water model, among good ones, has only a minor influence on

the RDFs for all investigated cases. As an example of such a small effect, switching from

ECCw2024 to TIP4P/2005 results in a slightly smaller second peak in the r-space data for

Ca2+, corresponding to the Ca–H correlation (Figure 8). In Q-space, the difference is barely

noticeable in the 4–8Å
−1

range.
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Figure 8: First-order difference functions ∆GCa(r) (left) and ∆SCa(Q) (right) for simulations
of 4m CaCl2 solution using the ECCions81 model with the ECCw2024 water model (red),
and with the TIP4P/2005 water model (blue), and experimental data (black).

24

https://doi.org/10.26434/chemrxiv-2025-k63tq ORCID: https://orcid.org/0000-0002-0271-2760 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2025-k63tq
https://orcid.org/0000-0002-0271-2760
https://creativecommons.org/licenses/by-nc-nd/4.0/


Conclusion

In this study, we developed a charge scaled ion force field, consistent with the a priori

ECC-compatible ECCw2024 water model, for biologically relevant cations (Li+, Na+, K+,

Mg2+, Ca2+) and anions (Cl−, Br−, I−) in concentrated aqueous solutions. The optimization

process was conducted through an automated framework incorporating a LGP model to

achieve global optimization across multiple target properties, including experimental neutron

diffraction data, solution densities, and viscosities. The resulting ECCion81 parameterization

was further validated against experimental data, comparing favorably to and in many aspects

outperforming the hitherto best ion model, i.e., Madrid2019, also a charge scaled model.

The ECCion81 models, employing a scale factor of 0.81, demonstrated excellent agree-

ment with experimental ion hydration structures across a wide range of concentrations. In

particular, emphasizing correct cation-anion pairing significantly improved the ability of the

model to reproduce neutron scattering data, in particular, the positions and heights of key

peaks in r-space for Li+, Na+, K+, Cl−, Mg2+, and Ca2+ ions. This performance surpassed

that of the Madrid2019 model, which exhibits minimal ion pairing in the first hydration

shell, except for K+.

In terms of thermodynamic properties, the ECCion81 model successfully captures the

concentration dependence of solution densities, showing comparable accuracy to Madrid2019,

with the exception of CaCl2, where the maximum deviation nevertheless did not exceed

4%. The ECCion81 model also exhibits high accuracy for viscosity and water self-diffusion

coefficients, maintaining deviations typically below 10% even at high concentrations (up to

4m). In comparison, the Madrid2019 model displays significant deviations from experimental

values at higher concentrations, particularly for viscosity and diffusion coefficients, where

errors reached up to 60% in some cases.

Nevertheless, certain limitations of the ECCion81 model have been identified. Variations

in the first-order difference function between 4m NaCl and 4m LiCl suggest that, while the

ECC Li+ model accurately captures ion–solvent correlations, it fails to accurately reproduce
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changes in O–O correlations induced by Li+. Additionally, a preliminary calculation of Na+

solubility using the Kirkwood–Buff method30 yielded a value of only about 1 m, significantly

lower than the experimental value of 6.1 m. This discrepancy points to potentially overly

too strong ion pairing in the first hydration shell, possibly due to overfitting to NDIS data.

This issue may be partially addressed by adopting a less steep short-range potential, such as

a Buckingham potential or a machine learning potential. These potentials should produce

more realistic structural features without relying on artificially too strong ion pairing. The

resulting RDFs from such improved potentials may then serve as more suitable references

for re-optimizing the Lennard-Jones parameters.

Finally note that the ECC-fully consistent scaling factor for a water model with a dielec-

tric constant around 45 is approximately 0.75, whereas the optimal value obtained in this

work was 0.81. This is primarily due to the relatively high emphasis in the parameteriza-

tion process on ion pairing, where we have shown previously that the dielectric screening

is slightly attenuated for ions at close contact. At the same time, this represents a certain

mismatch between the scaling factor and the dielectric constant of the water model. This

indicates a future need to identify a fully consistent combination of the scaling factor and

the dielectric constant of the water model. While our study shows robust behavior of water

and ion models across a relatively broad range of dielectric constants and scaling factors,

preliminary results, which form basis for our future work, point to an optimal choice of

scaling charges by 0.8 in water with a dielectric constant of about 50-55.
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